Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions
As pioneering Fe 3 O 4 nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe 2+ -induced Fenton-like reactions accounting for their POD-like activity, few have focused on the internal atomic changes and their contribution...
Uloženo v:
| Vydáno v: | Nature communications Ročník 13; číslo 1; s. 5365 - 11 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
12.09.2022
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | As pioneering Fe
3
O
4
nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe
2+
-induced Fenton-like reactions accounting for their POD-like activity, few have focused on the internal atomic changes and their contribution to the catalytic reaction. Here we report that Fe
2+
within Fe
3
O
4
can transfer electrons to the surface via the Fe
2+
-O-Fe
3+
chain, regenerating the surface Fe
2+
and enabling a sustained POD-like catalytic reaction. This process usually occurs with the outward migration of excess oxidized Fe
3+
from the lattice, which is a rate-limiting step. After prolonged catalysis, Fe
3
O
4
nanozymes suffer the phase transformation to γ-Fe
2
O
3
with depletable POD-like activity. This self-depleting characteristic of nanozymes with internal atoms involved in electron transfer and ion migration is well validated on lithium iron phosphate nanoparticles. We reveal a neglected issue concerning the necessity of considering both surface and internal atoms when designing, modulating, and applying nanozymes.
The mechanism of peroxidase-like Fe
3
O
4
nanozymes remains elusive. Here, the authors show the electron transfer mechanism of Fe(II) ions to regenerate surface Fe(II) and the related phase transformation and depletion of activity. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2041-1723 2041-1723 |
| DOI: | 10.1038/s41467-022-33098-y |