TLR or NOD receptor signaling skews monocyte fate decision via distinct mechanisms driven by mTOR and miR-155
Monocytes are rapidly recruited to inflamed tissues where they differentiate into monocyte-derived macrophages (mo-mac) or dendritic cells (mo-DC). At infection sites, monocytes encounter a broad range of microbial motifs. How pathogen recognition impacts monocyte fate decision is unclear. Here, we...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 118; H. 43 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
26.10.2021
|
| Schlagworte: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Monocytes are rapidly recruited to inflamed tissues where they differentiate into monocyte-derived macrophages (mo-mac) or dendritic cells (mo-DC). At infection sites, monocytes encounter a broad range of microbial motifs. How pathogen recognition impacts monocyte fate decision is unclear. Here, we show, using an in vitro model allowing the simultaneous differentiation of human mo-mac and mo-DC, that viruses promote mo-mac while Mycobacteria favor mo-DC differentiation. Mechanistically, we found that pathogen sensing through toll-like receptor (TLR) ligands increases mo-mac differentiation via mTORC1. By contrast, nucleotide-binding oligomerization domain (NOD) ligands favor mo-DC through the induction of TNF-α secretion and miR-155 expression. We confirmed these results in vivo, in mouse skin and by analyzing transcriptomic data from human individuals. Overall, our findings allow a better understanding of the molecular control of monocyte differentiation and of monocyte plasticity upon pathogen sensing. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1091-6490 1091-6490 |
| DOI: | 10.1073/pnas.2109225118 |