The penelope code system. Specific features and recent improvements

•penelope implements state-of-the-art models for electron and photon interactions.•It is characterized by a systematic use of class-II tracking of charged particles.•The code includes elaborate variance reduction methods and flexible geometry tools. Since its first release, back in 1996, the Monte C...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Annals of nuclear energy Ročník 82; s. 98 - 109
Hlavný autor: Salvat, Francesc
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.08.2015
Predmet:
ISSN:0306-4549, 1873-2100
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:•penelope implements state-of-the-art models for electron and photon interactions.•It is characterized by a systematic use of class-II tracking of charged particles.•The code includes elaborate variance reduction methods and flexible geometry tools. Since its first release, back in 1996, the Monte Carlo code system penelope has evolved into both a flexible and reliable tool for describing coupled electron–photon transport in complex material structures. The present article contains an overview of the physical interaction models, particle tracking methods, geometry tools, and variance-reduction techniques implemented in penelope. Recent refinements aimed at improving the accuracy of the code, and its stability under variations of user-defined simulation parameters, are also described. These include the use of reliable cross sections for the ionization of inner atomic electron shells by electron/positron impact, a reformulation of the random-hinge method, and the use of fuzzy quadric surfaces in the description of the geometry.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0306-4549
1873-2100
DOI:10.1016/j.anucene.2014.08.007