Comparing and Weighting Imperfect Models Using D-Probabilities
We propose a new approach for assigning weights to models using a divergence-based method (D-probabilities), relying on evaluating parametric models relative to a nonparametric Bayesian reference using Kullback-Leibler divergence. D-probabilities are useful in goodness-of-fit assessments, in compari...
Uloženo v:
| Vydáno v: | Journal of the American Statistical Association Ročník 115; číslo 531; s. 1349 - 1360 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Taylor & Francis
02.07.2020
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0162-1459, 1537-274X, 1537-274X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We propose a new approach for assigning weights to models using a divergence-based method (D-probabilities), relying on evaluating parametric models relative to a nonparametric Bayesian reference using Kullback-Leibler divergence. D-probabilities are useful in goodness-of-fit assessments, in comparing imperfect models, and in providing model weights to be used in model aggregation. D-probabilities avoid some of the disadvantages of Bayesian model probabilities, such as large sensitivity to prior choice, and tend to place higher weight on a greater diversity of models. In an application to linear model selection against a Gaussian process reference, we provide simple analytic forms for routine implementation and show that D-probabilities automatically penalize model complexity. Some asymptotic properties are described, and we provide interesting probabilistic interpretations of the proposed model weights. The framework is illustrated through simulation examples and an ozone data application.
Supplementary materials
for this aricle are available online. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0162-1459 1537-274X 1537-274X |
| DOI: | 10.1080/01621459.2019.1611140 |