Advances in Atypical FT-IR Milk Screening: Combining Untargeted Spectra Screening and Cluster Algorithms
Fourier-transform mid-infrared spectrometry is an attractive technology for screening adulterated liquid milk products. So far, studies on how infrared spectroscopy can be used to screen spectra for atypical milk composition have either used targeted methods to test for specific adulterants, or have...
Uloženo v:
| Vydáno v: | Foods Ročník 10; číslo 5; s. 1111 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
18.05.2021
MDPI |
| Témata: | |
| ISSN: | 2304-8158, 2304-8158 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Fourier-transform mid-infrared spectrometry is an attractive technology for screening adulterated liquid milk products. So far, studies on how infrared spectroscopy can be used to screen spectra for atypical milk composition have either used targeted methods to test for specific adulterants, or have used untargeted screening methods that do not reveal in what way the spectra are atypical. In this study, we evaluate the potential of combining untargeted screening methods with cluster algorithms to indicate in what way a spectrum is atypical and, if possible, why. We found that a combination of untargeted screening methods and cluster algorithms can reveal meaningful and generalizable categories of atypical milk spectra. We demonstrate that spectral information (e.g., the compositional milk profile) and meta-data associated with their acquisition (e.g., at what date and which instrument) can be used to understand in what way the milk is atypical and how it can be used to form hypotheses about the underlying causes. Thereby, it was indicated that atypical milk screening can serve as a valuable complementary quality assurance tool in routine FTIR milk analysis. |
|---|---|
| AbstractList | Fourier-transform mid-infrared spectrometry is an attractive technology for screening adulterated liquid milk products. So far, studies on how infrared spectroscopy can be used to screen spectra for atypical milk composition have either used targeted methods to test for specific adulterants, or have used untargeted screening methods that do not reveal in what way the spectra are atypical. In this study, we evaluate the potential of combining untargeted screening methods with cluster algorithms to indicate in what way a spectrum is atypical and, if possible, why. We found that a combination of untargeted screening methods and cluster algorithms can reveal meaningful and generalizable categories of atypical milk spectra. We demonstrate that spectral information (e.g., the compositional milk profile) and meta-data associated with their acquisition (e.g., at what date and which instrument) can be used to understand in what way the milk is atypical and how it can be used to form hypotheses about the underlying causes. Thereby, it was indicated that atypical milk screening can serve as a valuable complementary quality assurance tool in routine FTIR milk analysis. Fourier-transform mid-infrared spectrometry is an attractive technology for screening adulterated liquid milk products. So far, studies on how infrared spectroscopy can be used to screen spectra for atypical milk composition have either used targeted methods to test for specific adulterants, or have used untargeted screening methods that do not reveal in what way the spectra are atypical. In this study, we evaluate the potential of combining untargeted screening methods with cluster algorithms to indicate in what way a spectrum is atypical and, if possible, why. We found that a combination of untargeted screening methods and cluster algorithms can reveal meaningful and generalizable categories of atypical milk spectra. We demonstrate that spectral information (e.g., the compositional milk profile) and meta-data associated with their acquisition (e.g., at what date and which instrument) can be used to understand in what way the milk is atypical and how it can be used to form hypotheses about the underlying causes. Thereby, it was indicated that atypical milk screening can serve as a valuable complementary quality assurance tool in routine FTIR milk analysis.Fourier-transform mid-infrared spectrometry is an attractive technology for screening adulterated liquid milk products. So far, studies on how infrared spectroscopy can be used to screen spectra for atypical milk composition have either used targeted methods to test for specific adulterants, or have used untargeted screening methods that do not reveal in what way the spectra are atypical. In this study, we evaluate the potential of combining untargeted screening methods with cluster algorithms to indicate in what way a spectrum is atypical and, if possible, why. We found that a combination of untargeted screening methods and cluster algorithms can reveal meaningful and generalizable categories of atypical milk spectra. We demonstrate that spectral information (e.g., the compositional milk profile) and meta-data associated with their acquisition (e.g., at what date and which instrument) can be used to understand in what way the milk is atypical and how it can be used to form hypotheses about the underlying causes. Thereby, it was indicated that atypical milk screening can serve as a valuable complementary quality assurance tool in routine FTIR milk analysis. |
| Author | de Peinder, Peter Spieß, Lukas van den Bijgaart, Harrie |
| AuthorAffiliation | 1 Qlip B.V., P.O. Box 119, 7200 AC Zutphen, The Netherlands; bijgaart@qlip.nl 2 VibSpec, Haaftenlaan 28, 4006 XL Tiel, The Netherlands; info@vibspec.com |
| AuthorAffiliation_xml | – name: 2 VibSpec, Haaftenlaan 28, 4006 XL Tiel, The Netherlands; info@vibspec.com – name: 1 Qlip B.V., P.O. Box 119, 7200 AC Zutphen, The Netherlands; bijgaart@qlip.nl |
| Author_xml | – sequence: 1 givenname: Lukas surname: Spieß fullname: Spieß, Lukas – sequence: 2 givenname: Peter surname: de Peinder fullname: de Peinder, Peter – sequence: 3 givenname: Harrie surname: van den Bijgaart fullname: van den Bijgaart, Harrie |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34069770$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks9rFDEUgAep2Fp79CoBL72M5udMxoOwLFYXKoJtzyGTeTObdTZZk0yh_70Zt9VuEcwlj-R7X95L8rI4ct5BUbwm-B1jDX7fe99FgrEgeTwrTijDvJREyKNH8XFxFuMG59EQJhl9URwzjqumrvFJsV50t9oZiMg6tEh3O2v0iC6uy9V39NWOP9CVCQDOuuEDWvpta-cQ3bikwwAJOnS1A5OC_ssh7Tq0HKeYIKDFOPhg03obXxXPez1GOLufT4ubi0_Xyy_l5bfPq-XisjSC8FTqCnpZSYYJ540kum9Z3XSt1KQB3vTMUMEAiOFcY-C06lkFba1rAbk7LYCdFqu9t_N6o3bBbnW4U15b9XvBh0HpkKwZQbWa4JoBywLB-5pK2msAwXjHiaBSZ9fHvWs3tVvoDLjc6XggPdxxdq0Gf6vytdeYkCw4vxcE_3OCmNTWRgPjqB34KSraSFFVlND6_6hgFa9kzsjo2yfoxk_B5VudKcoxrqv57DePi_9T9cPbZ4DtARN8jAF6ZWzSyfq5FzsqgtX8ydTBJ8tZ5ZOsB_G_-V9lGNKt |
| CitedBy_id | crossref_primary_10_3389_fnut_2022_1074688 crossref_primary_10_3390_ani14091271 crossref_primary_10_1111_1471_0307_70049 |
| Cites_doi | 10.1111/1471-0307.12592 10.1016/j.foodchem.2015.02.077 10.1016/j.tifs.2018.04.001 10.3168/jds.2016-12102 10.1007/s11947-014-1455-y 10.1109/MCSE.2007.55 10.1038/s41586-020-2649-2 10.1007/s13197-017-2680-y 10.1111/1471-0307.12274 10.1016/j.foodres.2020.109543 10.17221/1708-CJAS 10.1016/j.talanta.2016.01.035 10.3168/jds.S0022-0302(97)75955-1 10.1093/jaoac/79.3.711 10.1079/9781845934590.0000 10.1038/s41592-019-0686-2 10.3168/jds.S0022-0302(80)82913-4 10.1016/j.foodres.2013.12.024 10.1016/j.idairyj.2004.01.005 10.1039/D0AN00062K |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION NPM 3V. 7QR 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
| DOI | 10.3390/foods10051111 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Agriculture Science Database Biotechnology and BioEngineering Abstracts ProQuest Databases ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Agricultural Science Database AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Diet & Clinical Nutrition |
| EISSN | 2304-8158 |
| ExternalDocumentID | oai_doaj_org_article_ba1073e3eb754f7282faee534d41528a PMC8157011 34069770 10_3390_foods10051111 |
| Genre | Journal Article |
| GeographicLocations | Netherlands |
| GeographicLocations_xml | – name: Netherlands |
| GroupedDBID | 53G 5VS 7X2 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 M0K M48 MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC RPM NPM 3V. 7QR 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 PUEGO 5PM |
| ID | FETCH-LOGICAL-c514t-a6ef86830144981afb379db8a19e49f3c253ee1c44a0e426f36eb7a75e091a5e3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000653877000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2304-8158 |
| IngestDate | Fri Oct 03 12:43:45 EDT 2025 Tue Nov 04 01:53:05 EST 2025 Thu Sep 04 19:13:30 EDT 2025 Sun Nov 09 11:57:58 EST 2025 Mon Jun 30 11:24:27 EDT 2025 Mon Jul 21 05:55:43 EDT 2025 Sat Nov 29 07:14:35 EST 2025 Tue Nov 18 21:47:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | cluster spectra Fourier-transform infrared chemometrics spectroscopy adulteration milk untargeted machine learning |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-a6ef86830144981afb379db8a19e49f3c253ee1c44a0e426f36eb7a75e091a5e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2532400761?pq-origsite=%requestingapplication% |
| PMID | 34069770 |
| PQID | 2532400761 |
| PQPubID | 2032399 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ba1073e3eb754f7282faee534d41528a pubmedcentral_primary_oai_pubmedcentral_nih_gov_8157011 proquest_miscellaneous_2985662127 proquest_miscellaneous_2536468298 proquest_journals_2532400761 pubmed_primary_34069770 crossref_citationtrail_10_3390_foods10051111 crossref_primary_10_3390_foods10051111 |
| PublicationCentury | 2000 |
| PublicationDate | 20210518 |
| PublicationDateYYYYMMDD | 2021-05-18 |
| PublicationDate_xml | – month: 5 year: 2021 text: 20210518 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Foods |
| PublicationTitleAlternate | Foods |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Yang (ref_24) 2020; 136 Pahlow (ref_27) 2020; 145 Fleming (ref_2) 2017; 100 ref_13 ref_12 ref_11 Hunter (ref_17) 2007; 9 Lim (ref_7) 2016; 151 Coitinho (ref_10) 2017; 54 Pedregosa (ref_15) 2011; 12 McGrath (ref_4) 2018; 76 Evers (ref_19) 2004; 14 Hansen (ref_6) 2019; 72 Harris (ref_16) 2020; 585 Poonia (ref_5) 2016; 70 Frelich (ref_18) 2010; 55 Botelho (ref_8) 2015; 181 Capuano (ref_25) 2014; 60 Shipe (ref_22) 1980; 63 Sapru (ref_23) 1997; 80 ref_20 Neta (ref_9) 2019; 12 Lefier (ref_1) 1996; 79 Jha (ref_3) 2015; 8 ref_26 Virtanen (ref_14) 2020; 17 Kirst (ref_21) 1986; 5 |
| References_xml | – volume: 72 start-page: 321 year: 2019 ident: ref_6 article-title: Development and application of Fourier transform infrared spectroscopy for detection of milk adulteration in practice publication-title: Int. J. Dairy Technol. doi: 10.1111/1471-0307.12592 – volume: 181 start-page: 31 year: 2015 ident: ref_8 article-title: Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.02.077 – volume: 76 start-page: 38 year: 2018 ident: ref_4 article-title: What are scientific challenges in moving from targeted to non-targeted methods for food fraud testing and how can they be addressed?—Spectroscopy case study publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2018.04.001 – volume: 100 start-page: 5073 year: 2017 ident: ref_2 article-title: Prediction of milk fatty acid content with mid-infrared spectroscopy in Canadian dairy cattle using differently distributed model development sets publication-title: J. Dairy Sci. doi: 10.3168/jds.2016-12102 – volume: 12 start-page: 1 year: 2019 ident: ref_9 article-title: On the utilization of deep and ensemble learning to detect milk adulteration publication-title: Biodata Min. – ident: ref_11 – volume: 8 start-page: 926 year: 2015 ident: ref_3 article-title: Detection and quantification of urea in milk using attenuated total reflectance-Fourier transform infrared spectroscopy publication-title: Food Bioprocess Technol. doi: 10.1007/s11947-014-1455-y – volume: 9 start-page: 90 year: 2007 ident: ref_17 article-title: Matplotlib: A 2D graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 585 start-page: 357 year: 2020 ident: ref_16 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 54 start-page: 2394 year: 2017 ident: ref_10 article-title: Adulteration identification in raw milk using Fourier transform infrared spectroscopy publication-title: J. Food Sci. Technol. doi: 10.1007/s13197-017-2680-y – volume: 70 start-page: 23 year: 2016 ident: ref_5 article-title: Detection of adulteration in milk: A review publication-title: Int. J. Dairy Technol. doi: 10.1111/1471-0307.12274 – volume: 136 start-page: 109543 year: 2020 ident: ref_24 article-title: Opportunities for fraudsters: When would profitable milk adulterations go unnoticed by common, standardized FTIR measurements? publication-title: Food Res. Int. doi: 10.1016/j.foodres.2020.109543 – volume: 55 start-page: 11 year: 2010 ident: ref_18 article-title: The analysis of relationships between chemical composition, physical, technological and health indicators and freezing point in raw cow milk publication-title: Czech J. Anim. Sci. doi: 10.17221/1708-CJAS – volume: 151 start-page: 183 year: 2016 ident: ref_7 article-title: Detection of melamine in milk powders using near-infrared hyperspectral imaging combined with regression coefficient of partial least squares regression model publication-title: Talanta doi: 10.1016/j.talanta.2016.01.035 – volume: 80 start-page: 437 year: 1997 ident: ref_23 article-title: Cheddar cheese: Influence of milking frequency and stage of lactation on composition and yield publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(97)75955-1 – volume: 79 start-page: 711 year: 1996 ident: ref_1 article-title: Determination of fat, protein, and lactose in raw milk by Fourier transform infrared spectroscopy and by analysis with a conventional filter-based milk analyzer publication-title: J. Aoac Int. doi: 10.1093/jaoac/79.3.711 – volume: 12 start-page: 2828 year: 2011 ident: ref_15 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – ident: ref_26 doi: 10.1079/9781845934590.0000 – volume: 17 start-page: 261 year: 2020 ident: ref_14 article-title: SciPy 1.0: Fundamental algorithms for scientific computing in Python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 63 start-page: 193 year: 1980 ident: ref_22 article-title: Modified copper soap solvent extraction method for measuring free fatty acids in milk publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(80)82913-4 – ident: ref_12 – ident: ref_13 – volume: 60 start-page: 59 year: 2014 ident: ref_25 article-title: Verification of fresh grass feeding, pasture grazing and organic farming by FTIR spectroscopy analysis of bovine milk publication-title: Food Res. Int. doi: 10.1016/j.foodres.2013.12.024 – volume: 5 start-page: 265 year: 1986 ident: ref_21 article-title: Lipolytic changes in the milk fat of raw milk and their effects on the quality of milk products publication-title: Food Microstruct. – volume: 14 start-page: 661 year: 2004 ident: ref_19 article-title: The milkfat globule membrane-compositional and structural changes post secretion by the mammary secretory cell publication-title: Int. Dairy J. doi: 10.1016/j.idairyj.2004.01.005 – ident: ref_20 – volume: 145 start-page: 3385 year: 2020 ident: ref_27 article-title: Removing interference-based effects from infrared spectra–interference fringes re-revisited publication-title: Analyst doi: 10.1039/D0AN00062K |
| SSID | ssj0000913832 |
| Score | 2.1661088 |
| Snippet | Fourier-transform mid-infrared spectrometry is an attractive technology for screening adulterated liquid milk products. So far, studies on how infrared... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1111 |
| SubjectTerms | Adulterants adulteration Algorithms Clusters Datasets Farms Food science Fourier transforms Fourier-transform infrared Infrared spectra Infrared spectroscopy Lactose liquids Mathematical models metadata Milk milk analysis milk composition Milk products Principal components analysis Proteins Quality assurance quality control Scientific imaging Screening spectra Spectrometry spectroscopy untargeted |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4k2gICOhnogarx0_uC2PFRxYIWil3iI7GbNRl6RqspX67xk72WWDeFy4xpPYHo8988mTbwh5acA6Vvlwq4sQRXjJUiOZTIW1meUqM-B0LDahlkt9dmY-75X6CjlhAz3woLhjZxGgcODgVC68QoTgLUDORRVcj46hEUY9e2AqnsGGIfSaDaSaHHH9sW_bqmPBBhljEycUufp_F2D-mie553gWd8jtMWKk82Gkd8kNaO6R5F0NPT2iI63nmi63rPr3yWo-3Ot3tG7ovL--iAKLk_TjF_qpXp_Tr2VItkGf9ZriceBiiQh62gxJ4VDRUJMeR_JTjtqmwq42gVSBztffWuxq9b17QE4X70_efkjHggppiXFRn1oJXksdUZTRzHrHlamctsyAMJ6Xs5wDsFIImwG6bs8lqt2qHFCfNgf-kBw0bQOPCeXgEWlkTjKrBdP4DXyvdNIJEYicZgl5tdVwUY5s46HoxbpA1BEWpJgsSEKOduIXA83GnwTfhOXaCQV27PgAbaYYbab4l80k5HC72MW4ZbsC5x7yaZXEPl7smnGzhRsU20C7iTJSSD0z-i8yRmOIHIjzE_JosJ_daHn4z1ipLCFqYlmT6UxbmnoVSb81yxWexU_-x_yfkluzkJoTSGj1ITnoLzfwjNwsr_q6u3wed9IPbTkkLw priority: 102 providerName: Directory of Open Access Journals |
| Title | Advances in Atypical FT-IR Milk Screening: Combining Untargeted Spectra Screening and Cluster Algorithms |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34069770 https://www.proquest.com/docview/2532400761 https://www.proquest.com/docview/2536468298 https://www.proquest.com/docview/2985662127 https://pubmed.ncbi.nlm.nih.gov/PMC8157011 https://doaj.org/article/ba1073e3eb754f7282faee534d41528a |
| Volume | 10 |
| WOSCitedRecordID | wos000653877000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2304-8158 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913832 issn: 2304-8158 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2304-8158 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913832 issn: 2304-8158 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 2304-8158 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913832 issn: 2304-8158 databaseCode: M0K dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2304-8158 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913832 issn: 2304-8158 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2304-8158 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913832 issn: 2304-8158 databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjgde-P4IjMpIaE9Ei2sndnhBHaxiQq2qsUnlKXISZ43okq5JkfjvuUvSjiLYCy95cC7JWXdn350vvwN4G1oT8zSjU10MUWQWcDcMeOBKYzwjlBfaWDfNJtRkomezcNol3KqurHKzJjYLdVomlCM_GvgEHUdR94fltUtdo-h0tWuhsQf7hFQme7B_fDKZnm2zLIR6iTrbgmsKjO-PsrJMK066yDnf2YwazP6_OZp_1kv-tgGNHvwv6w_hfud6smGrK4_gji0eg_MptzU7ZB0-6IJNNvD8T2A-bAsEKpYXbFj_XDYEo3P39IyN88V39jWhqh3c_N4zXFfiptcEuyja6nKbMmpuj1O5oWOmSPFTa0JnYMPFJXJZz6-qp3AxOjn_-NntOjO4CTpYtWsCm-lAN-FYqLnJYqHCNNaGh1aGmUhwytbyRErjWfQBMhHYWBnlWxSI8a14Br2iLOwLYMJmGLJ4ccCNllzjO_C5JA5iKQkRauDAu42IoqSDLafuGYsIwxeSaLQjUQcOt-TLFq_jX4THJO8tEcFsNwPl6jLqrBY9CYyOhRXIvC8zheFpZqz1hUzJ79HGgYONxKPO9qvoRtwOvNneRquloxhT2HLd0AQy0INQ30ITavS1CYHfgeetAm65FfTDslKeA2pHNXems3unyOcNerjmvsJF_eXtrL-CewOq3iGcWn0AvXq1tq_hbvKjzqtVH_bUTPc7Y-s3eQy8jr0vODY9HU-__QLvPzff |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuvB-GAosEPWHV613baySEAiVq1CaKaCuVk1nb6yYi2CF2QP1T_EZmbCclCHrrgas9ttf2N6_d2W8AXoRGxzzNaFUXUxSZ-dwOfe7bUmtHi8AJTazqZhPBcKhOTsLRBvxc7oWhssqlTawNdVokNEe-43pEHUdZ99vZN5u6RtHq6rKFRgOLfXP2A1O28k1_F__vS9ftfTh6v2e3XQXsBIODyta-yZSv6lQiVFxnsQjCNFaah0aGmUjwScbwRErtGPRfmfBNHOjAM-hatWcE3vcKbEoEu-rA5qg_GH1azeoQyybqSEPmKUTo7GRFkZacsM85X3N-dY-AvwW2f9Zn_ubwejf_t091C260oTXrNrpwGzZMfges3Ymp2DZr-U-nbLhsP3AXxt2mAKJkk5x1q7NZLdA7svsf2WAy_cIOE6pKQuf-mqHdjOteGuw4b6rnTcoOaZvqXJ_LMZ2n-KgFsU-w7vQUv0o1_lreg-NLefH70MmL3DwEJkyGKZkT-1wryRXeA69LYj-WkhivXAteLSERJS0tO3UHmUaYnhGCojUEWbC9Ep81fCT_EnxH-FoJEY14faCYn0atVcJICbN_YQQO3pNZgOl3po3xhEwprlPagq0lwqLWtpXRObwseL46jVaJlpp0bopFLeNLX7mhukAmVJhLUIcBCx40gF-NVtCG7CBwLAjWVGHtddbP5JNxzY6uuBeg03p08dCfwbW9o8FBdNAf7j-G6y5VKhEnr9qCTjVfmCdwNfleTcr501bFGXy-bFX5BX3wkE4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQIgX7pfAACPBnogax05iIyFUKBVVWTWxTdpbcBJ7rShJaVLQ_hq_jnNy6SiCve2B1-QkcZJztY-_j5DnyuiEZRZXdaFEETZkrgpZ6AqtPc0jT5lE1mQT0WQij4_V_hb52e2FwbbKzifWjjorUpwj7_kBQsdh1d2zbVvE_mD4ZvHNRQYpXGnt6DQaFRmb0x9QvpWvRwP41y98f_j-8N0Ht2UYcFNIFCpXh8bKUNZlhZJM24RHKkukZsoIZXkKTzWGpUJoz0Asszw0SaSjwECY1YHhcN9L5HIkAobtZHveeD2_g3ibYC0NrCfnyuvZoshKhlbAGNsIgzVbwN9S3D87NX8LfcMb__NHu0mutwk37TcWcotsmfw2cQYzU9Fd2qKizumkIyW4Q6b9pi2ipLOc9qvTRS0wPHRHn-jebP6FHqTYqwQh_xUFb5rUDBv0KG966k1GD3Dz6lKfyVGdZ_CoFWJS0P78BL5KNf1a3iVHF_Li98h2XuTmAaHcWCjUvCRkWgom4R5wXZqEiRCIg-U75GWnHnHagrUjZ8g8hqINtSne0CaH7K7FFw1Kyb8E36KurYUQXLw-UCxP4tZXQf7EwPEbDoMPhI2gKLfamICLDLM9qR2y02lb3Hq8Mj5TNYc8W58GX4ULUDo3xaqWCUUofSXPkVESKgzkHXDI_Ub516PluE07ijyHRBtmsfE6m2fy2bTGTJcsiCCUPTx_6E_JVbCP-ONoMn5ErvnYvoRAvXKHbFfLlXlMrqTfq1m5fFLbOiWfL9pOfgFlDJd8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Atypical+FT-IR+Milk+Screening%3A+Combining+Untargeted+Spectra+Screening+and+Cluster+Algorithms&rft.jtitle=Foods&rft.au=Spie%C3%9F%2C+Lukas&rft.au=de+Peinder%2C+Peter&rft.au=Harrie+van+den+Bijgaart&rft.date=2021-05-18&rft.pub=MDPI+AG&rft.eissn=2304-8158&rft.volume=10&rft.issue=5&rft.spage=1111&rft_id=info:doi/10.3390%2Ffoods10051111&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-8158&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-8158&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-8158&client=summon |