Critical assessment of methods of protein structure prediction (CASP)—Round XIV
Critical assessment of structure prediction (CASP) is a community experiment to advance methods of computing three‐dimensional protein structure from amino acid sequence. Core components are rigorous blind testing of methods and evaluation of the results by independent assessors. In the most recent...
Saved in:
| Published in: | Proteins, structure, function, and bioinformatics Vol. 89; no. 12; pp. 1607 - 1617 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
01.12.2021
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0887-3585, 1097-0134, 1097-0134 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Critical assessment of structure prediction (CASP) is a community experiment to advance methods of computing three‐dimensional protein structure from amino acid sequence. Core components are rigorous blind testing of methods and evaluation of the results by independent assessors. In the most recent experiment (CASP14), deep‐learning methods from one research group consistently delivered computed structures rivaling the corresponding experimental ones in accuracy. In this sense, the results represent a solution to the classical protein‐folding problem, at least for single proteins. The models have already been shown to be capable of providing solutions for problematic crystal structures, and there are broad implications for the rest of structural biology. Other research groups also substantially improved performance. Here, we describe these results and outline some of the many implications. Other related areas of CASP, including modeling of protein complexes, structure refinement, estimation of model accuracy, and prediction of inter‐residue contacts and distances, are also described. |
|---|---|
| AbstractList | Critical assessment of structure prediction (CASP) is a community experiment to advance methods of computing three‐dimensional protein structure from amino acid sequence. Core components are rigorous blind testing of methods and evaluation of the results by independent assessors. In the most recent experiment (CASP14), deep‐learning methods from one research group consistently delivered computed structures rivaling the corresponding experimental ones in accuracy. In this sense, the results represent a solution to the classical protein‐folding problem, at least for single proteins. The models have already been shown to be capable of providing solutions for problematic crystal structures, and there are broad implications for the rest of structural biology. Other research groups also substantially improved performance. Here, we describe these results and outline some of the many implications. Other related areas of CASP, including modeling of protein complexes, structure refinement, estimation of model accuracy, and prediction of inter‐residue contacts and distances, are also described. CASP is a community experiment to advance methods of computing three-dimensional protein structure from amino acid sequence. Core components are rigorous blind testing of methods and evaluation of the results by independent assessors. In the most recent experiment (CASP14) deep learning methods from one research group consistently delivered computed structures rivalling the corresponding experimental ones in accuracy. In this sense, the results represent a solution to the classical protein folding problem, at least for single proteins. The models have already been shown to be capable of providing solutions for problematic crystal structures, and there are broad implications for the rest of structural biology. Other research groups also substantially improved performance. Here we describe these results and outline some of the many implications. Other related areas of CASP, including modeling of protein complexes, structure refinement, estimation of model accuracy, and prediction of inter-residue contacts and distances, are also described. Critical assessment of structure prediction (CASP) is a community experiment to advance methods of computing three-dimensional protein structure from amino acid sequence. Core components are rigorous blind testing of methods and evaluation of the results by independent assessors. In the most recent experiment (CASP14), deep-learning methods from one research group consistently delivered computed structures rivaling the corresponding experimental ones in accuracy. In this sense, the results represent a solution to the classical protein-folding problem, at least for single proteins. The models have already been shown to be capable of providing solutions for problematic crystal structures, and there are broad implications for the rest of structural biology. Other research groups also substantially improved performance. Here, we describe these results and outline some of the many implications. Other related areas of CASP, including modeling of protein complexes, structure refinement, estimation of model accuracy, and prediction of inter-residue contacts and distances, are also described.Critical assessment of structure prediction (CASP) is a community experiment to advance methods of computing three-dimensional protein structure from amino acid sequence. Core components are rigorous blind testing of methods and evaluation of the results by independent assessors. In the most recent experiment (CASP14), deep-learning methods from one research group consistently delivered computed structures rivaling the corresponding experimental ones in accuracy. In this sense, the results represent a solution to the classical protein-folding problem, at least for single proteins. The models have already been shown to be capable of providing solutions for problematic crystal structures, and there are broad implications for the rest of structural biology. Other research groups also substantially improved performance. Here, we describe these results and outline some of the many implications. Other related areas of CASP, including modeling of protein complexes, structure refinement, estimation of model accuracy, and prediction of inter-residue contacts and distances, are also described. |
| Author | Topf, Maya Schwede, Torsten Kryshtafovych, Andriy Fidelis, Krzysztof Moult, John |
| AuthorAffiliation | 1 Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA 3 Centre for Structural Systems Biology, Leibniz-Institut für Experimentelle Virologie and Universit tsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany 4 Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA, Department of Cell Biology and Molecular Genetics, University of Maryland 2 University of Basel, Biozentrum & SIB Swiss Institute of Bioinformatics, Basel, Switzerland |
| AuthorAffiliation_xml | – name: 1 Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA – name: 3 Centre for Structural Systems Biology, Leibniz-Institut für Experimentelle Virologie and Universit tsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany – name: 2 University of Basel, Biozentrum & SIB Swiss Institute of Bioinformatics, Basel, Switzerland – name: 4 Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA, Department of Cell Biology and Molecular Genetics, University of Maryland |
| Author_xml | – sequence: 1 givenname: Andriy orcidid: 0000-0001-5066-7178 surname: Kryshtafovych fullname: Kryshtafovych, Andriy organization: Genome Center, University of California, Davis – sequence: 2 givenname: Torsten orcidid: 0000-0003-2715-335X surname: Schwede fullname: Schwede, Torsten organization: University of Basel, Biozentrum & SIB Swiss Institute of Bioinformatics – sequence: 3 givenname: Maya orcidid: 0000-0002-8185-1215 surname: Topf fullname: Topf, Maya organization: Centre for Structural Systems Biology, Leibniz‐Institut für Experimentelle Virologie and Universit tsklinikum Hamburg‐Eppendorf (UKE) – sequence: 4 givenname: Krzysztof orcidid: 0000-0002-8061-412X surname: Fidelis fullname: Fidelis, Krzysztof organization: Genome Center, University of California, Davis – sequence: 5 givenname: John orcidid: 0000-0002-3012-2282 surname: Moult fullname: Moult, John email: jmoult@umd.edu organization: University of Maryland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34533838$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc9qFTEYxYO02NvqxgeQATe1cGuSL5PkbgrlYv9AobVWcRcymYxNmUmuScbSnQ_hE_okZrytaBFXCcnvHM53vm204YO3CL0geJ9gTN-sYsj7lFMQT9CM4IWYYwJsA82wlGIOtay30HZKNxhjvgD-FG0BqwEkyBl6t4wuO6P7SqdkUxqsz1XoqsHm69Cm6TrZW-erlONo8hhtebGtM9kFX-0uD99fvP7x7ftlGH1bfTr9-AxtdrpP9vn9uYM-HL29Wp7Mz86PT5eHZ3NTE1ZiSSxANIy2TUuBQwecy45LUzdAWr4gGiQhWFtDNRFMAxjWdgZa22hbCNhBB2vf1dgMtjUleNS9WkU36Hingnbq7x_vrtXn8FVJQblgrBjs3hvE8GW0KavBJWP7XnsbxqRoLRgsMKMT-uoRehPG6Mt4inJMBJZ1PVEv_0z0O8pD2wXAa8DEkFK0nTIu66nHEtD1imA1LVRNjatfCy2SvUeSB9d_wmQN37re3v2HVBeX51drzU-PobI1 |
| CitedBy_id | crossref_primary_10_1021_acs_jcim_5c00797 crossref_primary_10_1016_j_crfs_2025_101146 crossref_primary_10_1126_science_abm8295 crossref_primary_10_1016_j_csbj_2023_06_001 crossref_primary_10_1007_s00439_025_02731_3 crossref_primary_10_3389_fmolb_2022_935411 crossref_primary_10_3103_S0027131424700238 crossref_primary_10_1002_adma_202204272 crossref_primary_10_1080_07391102_2023_2175384 crossref_primary_10_1002_prot_26223 crossref_primary_10_1016_j_cell_2025_03_034 crossref_primary_10_1038_s42003_023_05610_7 crossref_primary_10_1002_prot_26584 crossref_primary_10_1146_annurev_food_060721_022222 crossref_primary_10_1093_bioadv_vbae099 crossref_primary_10_1093_nar_gkad242 crossref_primary_10_1155_vmi_2638167 crossref_primary_10_7554_eLife_94029_3 crossref_primary_10_1038_s41467_024_48225_0 crossref_primary_10_1038_s41598_023_41556_w crossref_primary_10_1016_j_cels_2023_10_006 crossref_primary_10_1038_s41596_022_00728_0 crossref_primary_10_1016_j_ejmech_2024_116262 crossref_primary_10_1002_wcms_70016 crossref_primary_10_1002_prot_26598 crossref_primary_10_3390_ijms23073685 crossref_primary_10_1002_prot_26593 crossref_primary_10_1002_prot_26471 crossref_primary_10_3390_ijms242115858 crossref_primary_10_1016_j_jmb_2024_168494 crossref_primary_10_3390_biology14091268 crossref_primary_10_3390_biom15010141 crossref_primary_10_1016_j_pnmrs_2024_101556 crossref_primary_10_1038_s41598_024_71783_8 crossref_primary_10_1002_prot_26246 crossref_primary_10_1007_s00439_024_02680_3 crossref_primary_10_1002_pro_70110 crossref_primary_10_7554_eLife_89386 crossref_primary_10_1038_s41467_025_56261_7 crossref_primary_10_1038_s42004_023_00991_6 crossref_primary_10_1093_jamia_ocad159 crossref_primary_10_1002_prot_26802 crossref_primary_10_1038_s42003_024_07359_z crossref_primary_10_1088_1478_3975_acd543 crossref_primary_10_2174_1574893618666230412080702 crossref_primary_10_1002_prot_26247 crossref_primary_10_1016_j_bpj_2024_01_021 crossref_primary_10_1261_rna_080416_125 crossref_primary_10_1016_j_csbj_2024_01_019 crossref_primary_10_1038_s41598_023_31126_5 crossref_primary_10_1002_pro_4466 crossref_primary_10_1002_prot_26805 crossref_primary_10_1038_s41598_023_46969_1 crossref_primary_10_1016_j_sbi_2024_102775 crossref_primary_10_1107_S2052252523004943 crossref_primary_10_1002_cbic_202400092 crossref_primary_10_1002_prot_26257 crossref_primary_10_1016_j_ebiom_2024_105333 crossref_primary_10_1002_prot_26496 crossref_primary_10_1016_j_ymeth_2023_07_003 crossref_primary_10_1002_prot_70016 crossref_primary_10_1107_S2059798322002157 crossref_primary_10_1073_pnas_2315002121 crossref_primary_10_1002_prot_26533 crossref_primary_10_3390_biology12020182 crossref_primary_10_1016_j_isci_2023_106911 crossref_primary_10_1038_s41592_021_01361_7 crossref_primary_10_1038_s42256_023_00721_6 crossref_primary_10_3389_fmolb_2022_877000 crossref_primary_10_1177_11779322251358314 crossref_primary_10_1093_nargab_lqae150 crossref_primary_10_1107_S2059798322011676 crossref_primary_10_1107_S2052252523010291 crossref_primary_10_2478_amma_2024_0002 crossref_primary_10_1371_journal_pcbi_1012912 crossref_primary_10_1109_TEVC_2022_3220187 crossref_primary_10_1002_pro_70015 crossref_primary_10_1016_j_jmb_2023_168067 crossref_primary_10_3389_fmolb_2024_1360267 crossref_primary_10_3389_fmicb_2022_943379 crossref_primary_10_1002_prot_26545 crossref_primary_10_1038_s43586_023_00284_1 crossref_primary_10_7554_eLife_89386_2 crossref_primary_10_1038_s41577_023_00835_3 crossref_primary_10_1371_journal_pone_0320177 crossref_primary_10_1016_j_bpc_2022_106769 crossref_primary_10_1016_j_tifs_2025_105216 crossref_primary_10_1002_prot_26552 crossref_primary_10_1002_wcms_1690 crossref_primary_10_1016_j_cpc_2024_109112 crossref_primary_10_1093_bioadv_vbae187 crossref_primary_10_1093_nar_gkad297 crossref_primary_10_1007_s00239_024_10174_z crossref_primary_10_1016_j_jmgm_2025_109055 crossref_primary_10_3390_ijms242115656 crossref_primary_10_3390_ijms241310720 crossref_primary_10_1107_S2059798323004928 crossref_primary_10_1093_bioinformatics_btae497 crossref_primary_10_3390_v16091358 crossref_primary_10_1002_pro_4318 crossref_primary_10_1016_j_str_2025_08_007 crossref_primary_10_1017_qrd_2022_13 crossref_primary_10_1098_rsif_2024_0886 crossref_primary_10_3389_fmolb_2024_1414916 crossref_primary_10_1002_prot_26441 crossref_primary_10_1016_j_tibtech_2025_04_021 crossref_primary_10_3390_life12030363 crossref_primary_10_1093_nsr_nwad259 crossref_primary_10_3923_jms_2025_1_10 crossref_primary_10_1016_j_csbj_2023_01_036 crossref_primary_10_3389_fchem_2022_863118 crossref_primary_10_1002_prot_26569 crossref_primary_10_3389_fmolb_2022_906437 crossref_primary_10_1007_s12539_024_00622_1 crossref_primary_10_1016_j_jmb_2023_167994 crossref_primary_10_1038_s41467_021_27838_9 crossref_primary_10_1016_j_jmr_2023_107481 crossref_primary_10_1016_j_compbiomed_2024_108815 crossref_primary_10_1063_4_0000765 crossref_primary_10_1038_s41586_024_07510_0 crossref_primary_10_1007_s00249_023_01636_1 crossref_primary_10_1038_s41592_022_01488_1 crossref_primary_10_1007_s12551_025_01329_3 crossref_primary_10_1073_pnas_2221745120 crossref_primary_10_3390_ijms23169502 crossref_primary_10_1002_prot_26453 crossref_primary_10_1002_prot_26452 crossref_primary_10_3390_biom14030339 crossref_primary_10_1371_journal_pcbi_1013216 crossref_primary_10_3389_fmolb_2022_968424 crossref_primary_10_1002_prot_26617 crossref_primary_10_1016_j_gpb_2022_11_014 crossref_primary_10_1016_j_jmb_2025_169128 crossref_primary_10_1016_j_jmb_2024_168551 crossref_primary_10_1186_s13059_023_02962_5 crossref_primary_10_1038_s41598_024_67023_8 crossref_primary_10_1016_j_rineng_2024_103435 crossref_primary_10_3390_molecules28104047 crossref_primary_10_1093_nar_gkad1011 crossref_primary_10_1126_science_ads0018 crossref_primary_10_1007_s10462_025_11325_4 crossref_primary_10_1073_pnas_2313816120 crossref_primary_10_3390_molecules28227462 crossref_primary_10_4049_jimmunol_2300150 crossref_primary_10_55071_ticaretfbd_1323165 crossref_primary_10_1039_D2RA06433B crossref_primary_10_1016_j_csbj_2025_08_028 crossref_primary_10_1016_j_jmb_2023_168021 crossref_primary_10_1039_D5CP01448D crossref_primary_10_1002_pro_4524 crossref_primary_10_1016_j_bpj_2022_11_011 crossref_primary_10_1371_journal_pcbi_1012302 crossref_primary_10_1186_s12859_023_05370_5 crossref_primary_10_1371_journal_pcbi_1010483 crossref_primary_10_1038_s43588_024_00714_4 crossref_primary_10_1016_j_sbi_2023_102539 crossref_primary_10_1016_j_crstbi_2025_100167 crossref_primary_10_1016_j_cis_2024_103342 crossref_primary_10_1038_s41587_025_02654_4 crossref_primary_10_1186_s40246_024_00655_z crossref_primary_10_3389_fmolb_2023_1214424 crossref_primary_10_1002_prot_26515 crossref_primary_10_1073_pnas_2311807121 crossref_primary_10_1002_advs_202404786 crossref_primary_10_1016_j_jmr_2022_107268 crossref_primary_10_1371_journal_pone_0286540 crossref_primary_10_1038_s41576_023_00679_6 crossref_primary_10_1038_s41592_025_02819_8 crossref_primary_10_1038_s41598_024_69021_2 crossref_primary_10_1371_journal_pone_0281642 crossref_primary_10_1093_nar_gkae270 crossref_primary_10_1186_s13321_024_00884_3 crossref_primary_10_1186_s12859_024_05991_4 crossref_primary_10_1016_j_sbi_2023_102627 crossref_primary_10_1038_s41592_023_02087_4 crossref_primary_10_1038_s41573_025_01273_7 crossref_primary_10_1002_ctm2_1789 crossref_primary_10_1038_s41592_022_01645_6 crossref_primary_10_46740_alku_1522590 crossref_primary_10_1016_j_compbiomed_2025_109842 crossref_primary_10_1093_bib_bbaf104 crossref_primary_10_2174_0109298673263447230920151524 crossref_primary_10_1016_j_drudis_2024_104025 crossref_primary_10_3390_ijms231911685 crossref_primary_10_1002_pro_4503 crossref_primary_10_1016_j_jbc_2022_101932 crossref_primary_10_1038_s41467_023_44593_1 crossref_primary_10_1038_s41392_023_01381_z crossref_primary_10_1093_bib_bbac502 crossref_primary_10_1002_prot_26653 crossref_primary_10_1016_j_csbj_2022_11_032 crossref_primary_10_1038_s42003_022_03502_w crossref_primary_10_3389_fbioe_2023_1051268 crossref_primary_10_3390_ph15030310 crossref_primary_10_3390_molecules29122838 crossref_primary_10_1016_j_sbi_2024_102819 crossref_primary_10_1186_s12859_023_05354_5 crossref_primary_10_1126_science_ade2574 crossref_primary_10_1016_j_csbr_2025_100062 crossref_primary_10_1146_annurev_biophys_102622_084607 crossref_primary_10_1016_j_csbj_2022_12_039 crossref_primary_10_1002_advs_202309051 crossref_primary_10_1093_bib_bbac267 crossref_primary_10_1146_annurev_virology_100520_011851 crossref_primary_10_1016_j_csbj_2025_05_009 crossref_primary_10_1107_S205979832300102X crossref_primary_10_3390_biom12111665 crossref_primary_10_1111_imr_13236 crossref_primary_10_1038_s41598_022_14055_7 crossref_primary_10_1107_S2059798322009986 crossref_primary_10_12677_HJCB_2023_131001 crossref_primary_10_1016_j_pnmrs_2022_09_001 crossref_primary_10_3390_app15063283 crossref_primary_10_1002_prot_26705 crossref_primary_10_1021_jacs_5c00656 crossref_primary_10_1073_pnas_2305013120 crossref_primary_10_1093_bib_bbad100 crossref_primary_10_1002_prot_26828 crossref_primary_10_1038_s41598_023_45200_5 crossref_primary_10_1107_S2053230X23004934 crossref_primary_10_1016_j_compbiomed_2022_105695 crossref_primary_10_3389_fmolb_2022_909567 crossref_primary_10_3390_biom12020147 crossref_primary_10_1016_j_bpj_2024_04_001 crossref_primary_10_1186_s13059_023_03113_6 crossref_primary_10_1186_s13321_024_00821_4 crossref_primary_10_1016_j_csbj_2025_01_001 crossref_primary_10_1016_j_tibs_2023_03_003 crossref_primary_10_1002_imt2_9 crossref_primary_10_1038_s42003_023_04488_9 crossref_primary_10_1016_j_sbi_2023_102542 crossref_primary_10_58240_1829006X_2025_21_6_361 crossref_primary_10_1038_s44386_025_00019_0 crossref_primary_10_1002_adsr_202300053 crossref_primary_10_7554_eLife_94029 crossref_primary_10_1002_2211_5463_13902 crossref_primary_10_1038_s42256_023_00741_2 crossref_primary_10_1093_bib_bbae338 crossref_primary_10_1002_pro_5112 crossref_primary_10_1038_s41592_023_02130_4 crossref_primary_10_1246_cl_220172 crossref_primary_10_1016_j_jmgm_2023_108430 crossref_primary_10_1038_s42003_022_03261_8 crossref_primary_10_1007_s00792_024_01341_7 crossref_primary_10_1016_j_csbj_2023_10_056 crossref_primary_10_1093_bib_bbac152 crossref_primary_10_1186_s12864_021_08181_1 crossref_primary_10_1002_pro_5115 crossref_primary_10_1002_prot_26172 crossref_primary_10_1002_prot_26171 crossref_primary_10_1002_nadc_20244143087 crossref_primary_10_1038_s41467_024_54816_8 crossref_primary_10_1016_j_semcancer_2023_06_005 crossref_primary_10_1002_2211_5463_13593 crossref_primary_10_1002_pmic_202300397 crossref_primary_10_1093_nar_gkac340 |
| Cites_doi | 10.1002/prot.25804 10.1093/nar/gkg571 10.1016/j.sbi.2019.12.016 10.1016/j.neucom.2021.03.091 10.1038/nrg3414 10.1016/0022-2836(91)90721-H 10.1002/prot.25837 10.1002/prot.26231 10.1002/prot.26138 10.1002/prot.26225 10.1002/prot.25834 10.1002/prot.26246 10.1038/s41586-021-03819-2 10.1002/prot.25823 10.1002/prot.26171 10.1002/prot.26223 10.1038/s41564-021-00895-y 10.1016/0014-5793(92)80892-K 10.1002/prot.26248 10.1002/prot.26172 10.1002/prot.26214 10.1002/prot.25827 10.1126/science.181.4096.223 10.1002/prot.26199 10.1002/pro.3588 10.1093/protein/7.8.953 10.1002/prot.26192 10.1002/prot.26247 10.1126/science.1219021 10.1002/prot.26209 10.1016/j.bpj.2014.08.033 10.1002/prot.26197 10.1110/ps.0201402 10.1002/prot.26222 10.1051/jcp/1968650044 10.1002/prot.26185 10.1002/prot.25816 10.1002/prot.26235 10.1007/s10822-020-00317-x 10.1002/prot.24943 10.1002/prot.25779 10.1002/prot.10052 10.1002/prot.25870 10.1002/prot.24448 10.1002/prot.26202 10.1002/prot.26257 10.1002/prot.25407 10.1002/prot.10454 10.1126/science.abj8754 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2021 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
| DOI | 10.1002/prot.26237 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | Virology and AIDS Abstracts MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| EISSN | 1097-0134 |
| EndPage | 1617 |
| ExternalDocumentID | PMC8726744 34533838 10_1002_prot_26237 PROT26237 |
| Genre | article Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institute of General Medical Sciences funderid: R01GM100482 – fundername: NIGMS NIH HHS grantid: R01 GM100482 – fundername: Medical Research Council grantid: G0600084 – fundername: Medical Research Council grantid: MR/N009614/1 |
| GroupedDBID | -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FA8 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c5147-380737b42dbd2363f3668f68c5b31d691a38110aec2a174a33c4dfc3debae31d3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 324 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704287100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0887-3585 1097-0134 |
| IngestDate | Tue Nov 04 02:06:52 EST 2025 Wed Oct 01 14:01:16 EDT 2025 Sat Nov 29 15:07:53 EST 2025 Mon Jul 21 06:03:11 EDT 2025 Tue Nov 18 20:49:29 EST 2025 Sat Nov 29 01:48:13 EST 2025 Wed Jan 22 16:27:00 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Alphafold community wide experiment protein folding CASP protein structure prediction |
| Language | English |
| License | 2021 Wiley Periodicals LLC. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5147-380737b42dbd2363f3668f68c5b31d691a38110aec2a174a33c4dfc3debae31d3 |
| Notes | Funding information National Institute of General Medical Sciences, Grant/Award Number: R01GM100482 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2715-335X 0000-0002-8185-1215 0000-0002-3012-2282 0000-0001-5066-7178 0000-0002-8061-412X |
| PMID | 34533838 |
| PQID | 2601708554 |
| PQPubID | 1016441 |
| PageCount | 11 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8726744 proquest_miscellaneous_2574390424 proquest_journals_2601708554 pubmed_primary_34533838 crossref_citationtrail_10_1002_prot_26237 crossref_primary_10_1002_prot_26237 wiley_primary_10_1002_prot_26237_PROT26237 |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hokoben |
| PublicationTitle | Proteins, structure, function, and bioinformatics |
| PublicationTitleAlternate | Proteins |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 89 2021; 6 2021; 89 1973; 181 2020; 61 2002; 11 1992; 307 2020; 34 2001; 45 2014; 82 2018; 86 2003; 31 2003; 53 1968; 65 1991; 218 2014; 107 2013; 14 2021; 596 2019; 87 2019; 28 2016; 84 2021; 373 2020; 88 2021; 452 2012; 338 1994; 7 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
| References_xml | – volume: 89 start-page: 1700 issue: 12 year: 2021 end-page: 1710 article-title: Assessment of domain interactions in CASP14 publication-title: Proteins – volume: 89 start-page: 1633 issue: 12 year: 2021 end-page: 1646 article-title: Computational models in the service of X‐ray and cryo‐EM structure determination publication-title: Proteins – volume: 87 start-page: 1092 issue: 12 year: 2019 end-page: 1099 article-title: Prediction of interresidue contacts with DeepMetaPSICOV in CASP13 publication-title: Proteins – volume: 307 start-page: 10 issue: 1 year: 1992 end-page: 13 article-title: Concepts in protein folding publication-title: FEBS Lett – volume: 53 start-page: 76 issue: 1 year: 2003 end-page: 87 article-title: An improved protein decoy set for testing energy functions for protein structure prediction publication-title: Proteins – volume: 89 start-page: 1852 issue: 12 year: 2021 end-page: 1869 article-title: Evaluation of model refinement in CASP14 publication-title: Proteins – volume: 31 start-page: 3370 issue: 13 year: 2003 end-page: 3374 article-title: LGA: a method for finding 3D similarities in protein structures publication-title: Nucleic Acids Res – volume: 65 start-page: 44 year: 1968 end-page: 45 article-title: Are there pathways for protein folding? publication-title: J Chim Phys – volume: 45 start-page: 13 issue: S5 year: 2001 end-page: 21 article-title: Processing and evaluation of predictions in CASP4 publication-title: Proteins – volume: 89 start-page: 1673 issue: 12 year: 2021 end-page: 1686 article-title: Topology evaluation of models for difficult targets in the 14th round of the critical assessment of protein structure prediction (CASP14) publication-title: Proteins – volume: 7 start-page: 953 issue: 8 year: 1994 end-page: 960 article-title: Comparison of systematic search and database methods for constructing segments of protein structure publication-title: Protein Eng – volume: 34 start-page: 709 issue: 7 year: 2020 end-page: 715 article-title: Artificial intelligence in chemistry and drug design publication-title: J Comput Aided Mol Des – volume: 89 start-page: 1787 issue: 12 year: 2021 end-page: 1799 article-title: Assessment of the CASP14 assembly predictions publication-title: Proteins – volume: 338 start-page: 1042 issue: 6110 year: 2012 end-page: 1046 article-title: The protein‐folding problem, 50 years on publication-title: Science – volume: 89 start-page: 1647 issue: 12 year: 2021 end-page: 1672 article-title: Target s in CASP14: analysis of models by structure providers publication-title: Proteins – volume: 89 start-page: 1618 issue: 12 year: 2021 end-page: 1632 article-title: Target classification in the 14th round of the critical assessment of protein structure prediction (CASP14) publication-title: Proteins – volume: 373 start-page: 871 issue: 6557 year: 2021 end-page: 876 article-title: Accurate prediction of protein structures and interactions using a three‐track neural network publication-title: Science – volume: 89 start-page: 1940 issue: 12 year: 2021 end-page: 1948 article-title: Assessment of protein model structure accuracy estimation in CASP14: old and new challenges publication-title: Proteins – volume: 181 start-page: 223 issue: 4096 year: 1973 end-page: 230 article-title: Principles that govern the folding of protein chains publication-title: Science – volume: 11 start-page: 1285 issue: 6 year: 2002 end-page: 1299 article-title: 3D domain swapping: as domains continue to swap publication-title: Protein Sci – volume: 89 start-page: 1800 issue: 12 year: 2021 end-page: 1823 article-title: Prediction of protein assemblies, the next frontier: the CASP14‐CAPRI experiment publication-title: Proteins – volume: 86 start-page: 51 issue: suppl 1 year: 2018 end-page: 66 article-title: Assessment of contact predictions in CASP12: co‐evolution and deep learning coming of age publication-title: Proteins – volume: 89 start-page: 1824 issue: 12 year: 2021 end-page: 1833 article-title: Protein oligomer modeling guided by predicted interchain contacts in CASP14 publication-title: Proteins – volume: 89 start-page: 1987 issue: 12 year: 2021 end-page: 1996 article-title: Modeling SARS‐CoV2 proteins in the CASP‐commons experiment publication-title: Proteins – volume: 28 start-page: 678 issue: 4 year: 2019 end-page: 683 article-title: What has de novo protein design taught us about protein folding and biophysics? publication-title: Protein Sci – volume: 89 start-page: 1752 issue: 12 year: 2021 end-page: 1769 article-title: Assessing the utility of CASP14 models for molecular replacement publication-title: Proteins – volume: 87 start-page: 1283 issue: 12 year: 2019 end-page: 1297 article-title: Assessment of chemical‐crosslink‐assisted protein structure modeling in CASP13 publication-title: Proteins – volume: 107 start-page: 1785 issue: 8 year: 2014 end-page: 1793 article-title: Protein‐protein docking: from interaction to interactome publication-title: Biophys J – volume: 87 start-page: 1011 issue: 12 year: 2019 end-page: 1020 article-title: Critical assessment of methods of protein structure prediction (CASP)‐round XIII publication-title: Proteins – volume: 87 start-page: 1298 issue: 12 year: 2019 end-page: 1314 article-title: Small angle X‐ray scattering‐assisted protein structure prediction in CASP13 and emergence of solution structure differences publication-title: Proteins – volume: 6 start-page: 712 issue: 6 year: 2021 end-page: 721 article-title: Molecular structure of the intact bacterial flagellar basal body publication-title: Nat Microbiol – volume: 87 start-page: 1315 issue: 12 year: 2019 end-page: 1332 article-title: Protein structure prediction assisted with sparse NMR data in CASP13 publication-title: Proteins – volume: 89 start-page: 1888 issue: 12 year: 2021 end-page: 1900 article-title: Assessing the accuracy of contact and distance predictions in CASP14 publication-title: Proteins: Structure, Function, and Bioinformatics – volume: 89 start-page: 1687 issue: 12 year: 2021 end-page: 1699 article-title: High‐accuracy protein structure prediction in CASP14 publication-title: Proteins – volume: 89 start-page: 1711 issue: 12 end-page: 1721 – volume: 89 start-page: 1959 issue: 12 year: 2021 end-page: 1976 article-title: Assessment of prediction methods for protein structures determined by NMR in CASP14: impact of AlphaFold2 publication-title: Proteins – volume: 61 start-page: 139 year: 2020 end-page: 145 article-title: Machine learning approaches for analyzing and enhancing molecular dynamics simulations publication-title: Curr Opin Struct Biol – volume: 89 start-page: 1226 issue: 9 year: 2021 end-page: 1228 article-title: AlphaFold2 predicts the inward‐facing conformation of the multidrug transporter LmrP publication-title: Proteins – volume: 89 start-page: 1922 issue: 12 year: 2021 end-page: 1939 article-title: Assessing the binding properties of CASP14 targets and models publication-title: Proteins – volume: 218 start-page: 397 issue: 2 year: 1991 end-page: 412 article-title: Influence of proline residues on protein conformation publication-title: J Mol Biol – volume: 88 start-page: 916 issue: 8 year: 2020 end-page: 938 article-title: Modeling protein‐protein, protein‐peptide, and protein‐oligosaccharide complexes: CAPRI 7th edition publication-title: Proteins – volume: 89 start-page: 1770 issue: 12 year: 2021 end-page: 1786 article-title: Protein sequence‐to‐structure learning: is this the end(−to‐ end revolution)? publication-title: Proteins – volume: 82 start-page: 164 issue: suppl 2 year: 2014 end-page: 174 article-title: CASP10 results compared to those of previous CASP experiments publication-title: Proteins – volume: 14 start-page: 249 issue: 4 year: 2013 end-page: 261 article-title: Emerging methods in protein co‐evolution publication-title: Nat Rev Genet – volume: 452 start-page: 48 year: 2021 end-page: 62 article-title: A review on the attention mechanism of deep learning publication-title: Neurocomputing – volume: 84 start-page: 131 issue: suppl 1 year: 2016 end-page: 144 article-title: New encouraging developments in contact prediction: assessment of the CASP11 results publication-title: Proteins – volume: 87 start-page: 1351 issue: 12 year: 2019 end-page: 1360 article-title: Assessment of protein model structure accuracy estimation in CASP13: challenges in the era of deep learning publication-title: Proteins – volume: 596 start-page: 583 issue: 7873 year: 2021 end-page: 589 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature – volume: 87 start-page: 1141 issue: 12 year: 2019 end-page: 1148 article-title: Protein structure prediction using multiple deep neural networks in CASP13 publication-title: Proteins – ident: e_1_2_7_32_1 doi: 10.1002/prot.25804 – ident: e_1_2_7_25_1 doi: 10.1093/nar/gkg571 – ident: e_1_2_7_31_1 doi: 10.1016/j.sbi.2019.12.016 – ident: e_1_2_7_41_1 doi: 10.1016/j.neucom.2021.03.091 – ident: e_1_2_7_35_1 doi: 10.1038/nrg3414 – ident: e_1_2_7_50_1 doi: 10.1016/0022-2836(91)90721-H – ident: e_1_2_7_16_1 doi: 10.1002/prot.25837 – ident: e_1_2_7_17_1 doi: 10.1002/prot.26231 – ident: e_1_2_7_48_1 doi: 10.1002/prot.26138 – ident: e_1_2_7_10_1 doi: 10.1002/prot.26225 – ident: e_1_2_7_37_1 doi: 10.1002/prot.25834 – ident: e_1_2_7_20_1 doi: 10.1002/prot.26246 – ident: e_1_2_7_39_1 doi: 10.1038/s41586-021-03819-2 – ident: e_1_2_7_19_1 doi: 10.1002/prot.25823 – ident: e_1_2_7_2_1 doi: 10.1002/prot.26171 – ident: e_1_2_7_13_1 doi: 10.1002/prot.26223 – ident: e_1_2_7_21_1 doi: 10.1038/s41564-021-00895-y – ident: e_1_2_7_44_1 doi: 10.1016/0014-5793(92)80892-K – ident: e_1_2_7_6_1 doi: 10.1002/prot.26248 – ident: e_1_2_7_3_1 doi: 10.1002/prot.26172 – ident: e_1_2_7_49_1 doi: 10.1002/prot.26214 – ident: e_1_2_7_14_1 doi: 10.1002/prot.25827 – ident: e_1_2_7_26_1 doi: 10.1126/science.181.4096.223 – ident: e_1_2_7_4_1 doi: 10.1002/prot.26199 – ident: e_1_2_7_47_1 doi: 10.1002/pro.3588 – ident: e_1_2_7_46_1 doi: 10.1093/protein/7.8.953 – ident: e_1_2_7_8_1 doi: 10.1002/prot.26192 – ident: e_1_2_7_12_1 doi: 10.1002/prot.26247 – ident: e_1_2_7_45_1 doi: 10.1126/science.1219021 – ident: e_1_2_7_9_1 doi: 10.1002/prot.26209 – ident: e_1_2_7_28_1 doi: 10.1016/j.bpj.2014.08.033 – ident: e_1_2_7_23_1 doi: 10.1002/prot.26197 – ident: e_1_2_7_40_1 – ident: e_1_2_7_22_1 doi: 10.1110/ps.0201402 – ident: e_1_2_7_5_1 doi: 10.1002/prot.26222 – ident: e_1_2_7_43_1 doi: 10.1051/jcp/1968650044 – ident: e_1_2_7_7_1 doi: 10.1002/prot.26185 – ident: e_1_2_7_15_1 doi: 10.1002/prot.25816 – ident: e_1_2_7_38_1 doi: 10.1002/prot.26235 – ident: e_1_2_7_51_1 doi: 10.1007/s10822-020-00317-x – ident: e_1_2_7_33_1 doi: 10.1002/prot.24943 – ident: e_1_2_7_36_1 doi: 10.1002/prot.25779 – ident: e_1_2_7_24_1 doi: 10.1002/prot.10052 – ident: e_1_2_7_27_1 doi: 10.1002/prot.25870 – ident: e_1_2_7_18_1 doi: 10.1002/prot.24448 – ident: e_1_2_7_11_1 doi: 10.1002/prot.26202 – ident: e_1_2_7_42_1 doi: 10.1002/prot.26257 – ident: e_1_2_7_34_1 doi: 10.1002/prot.25407 – ident: e_1_2_7_30_1 doi: 10.1002/prot.10454 – ident: e_1_2_7_29_1 doi: 10.1126/science.abj8754 |
| SSID | ssj0006936 |
| Score | 2.7243576 |
| Snippet | Critical assessment of structure prediction (CASP) is a community experiment to advance methods of computing three‐dimensional protein structure from amino... Critical assessment of structure prediction (CASP) is a community experiment to advance methods of computing three-dimensional protein structure from amino... CASP is a community experiment to advance methods of computing three-dimensional protein structure from amino acid sequence. Core components are rigorous blind... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1607 |
| SubjectTerms | Alphafold Amino Acid Sequence Amino acids CASP community wide experiment Computational Biology Crystal structure Deep learning Model accuracy Models, Statistical Molecular Dynamics Simulation Predictions Protein Conformation Protein Folding Protein structure protein structure prediction Proteins Proteins - chemistry Proteins - metabolism Sequence Analysis, Protein Software |
| Title | Critical assessment of methods of protein structure prediction (CASP)—Round XIV |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.26237 https://www.ncbi.nlm.nih.gov/pubmed/34533838 https://www.proquest.com/docview/2601708554 https://www.proquest.com/docview/2574390424 https://pubmed.ncbi.nlm.nih.gov/PMC8726744 |
| Volume | 89 |
| WOSCitedRecordID | wos000704287100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0134 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006936 issn: 0887-3585 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED9BGRovbMD-lDHkaWiCSRnUduxE2kvXUTFpYl0HqG-R4zhapS1FFJD2tg_BJ-ST7M75AxVo0rQ3K74kjn1n_86-_A5gq8MzaRHqBjyPbSDT3ARGhyZwCB4ytLBQy9Qnm9CHh9FoFA_m4H39L0zJD9FsuJFl-PmaDNyk090b0lDiMXjHcfXW87DAUXFlCxY-DvvHn5uZWMU-RWBpSIiLG3pSvntz9-yCdAdl3g2WvA1i_SrUf_R_7X8MyxX6ZN1SXVZgzhWrsNYt0PP--Yu9YT4e1G-0r8Lih7r0sFdnhVuDr3VuBGYaTk82yVmZiXpKRU_9MC5YSU17cebwCh0HkQqw7V7322Dn-vfVkPI5sdGnkydw3N8_6h0EVVqGwCK6wp6McFrQqeRZmnGhRC6UinIV2TAVnUzFHYMooLNnnOUG_R0jhJVZbkXmUuNQQjyFVjEp3HNgRqK7KIgRXhHxu4ilUynOIHm4l7vYRm3YqccmsRVnOaXO-JGUbMs8oU9KfC-24XUje1oyddwrtVEPcVJZ6zQhWjXtA_ba8Kqpxo6lwxNTuMkFyoTkutFBcRuelRrRvEbIkDx9bK6e0ZVGgDi8Z2uK8XfP5R1prrTEZ771uvKXlieD4ZcjX1r_F-EXsMQpDMdH4GxAC4fevYQH9vJ8PD3bhHk9ijYru_kDkdMcRQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tb9MwED5BBxpfBmy8dAwwAiGGFLbajp18LIVqE6WU0qF-ixzH0SqNFK0Mad_2I_YL90u4c15GNYSE-GYll8Qvd_Zz9uU5gBcdnkmLUDfgeWwDmeYmMDo0gUPwkKGFhVqmPtmEHg6j6TQeVbE59C9MyQ_RbLiRZfj5mgycNqR3LllDicjgDcflW1-HFYl6FLZg5d24fzBopmIV-xyBpSUhMG74SfnO5dPLK9IVmHk1WvJ3FOuXof7t_2zAHVir8CfrlgpzF665Yh02ugX63t9O2UvmI0L9Vvs63Hxbl1Z7dV64DfhcZ0dgpmH1ZPOclbmoF1T05A-zgpXktCfHDq_QgRApAXvV634ZbV-cnY8poxOb7n-9Bwf995PeXlAlZggs4ivsyggnBp1KnqUZF0rkQqkoV5ENU9HJVNwxiAM6u8ZZbtDjMUJYmeVWZC41DiXEfWgV88I9BGYkOoyCOOEVUb-LWDqV4hySh7u5i23Uhu16cBJbsZZT8oyjpORb5gk1KfG92Ibnjez3kqvjj1Jb9Rgnlb0uEiJW0z5krw3PmtvYsXR8Ygo3P0GZkJw3Oipuw4NSJZrPCBmSr4_V1UvK0ggQi_fynWJ26Nm8I82VlvjO115Z_lLzZDT-NPGlzX8Rfgqre5OPg2SwP_zwCG5xCsrx8Thb0EI1cI_hhv35Y7Y4flKZzy_SBx9N |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1BC4UXLi2XhQJGINQipe3ajp08LltWVFTLsrTVvkWOY4uV2mzVpUi88RF8IV_CjHMpqyIkxJuVTBJfZuwz9uQMwMsuL6RFqBtxn9pI5t5ERscmcggeCrSwWMs8JJvQw2EymaSjOjaH_oWp-CHaDTeyjDBfk4G708JvX7CGEpHBFsflW1-FZRmnCu1yeXc8ONxvp2KVhhyBlSUhMG75Sfn2xdOLK9IlmHk5WvJ3FBuWocHt_2zAHbhV40_WqxTmLlxx5Sqs9Ur0vU--sVcsRISGrfZVuP6mKd3oN3nh1uBjkx2BmZbVk808q3JRz6kYyB-mJavIac_PHF6hAyFSArbR730abf78_mNMGZ3YZO_oHhwO3h7030V1YobIIr7CrkxwYtC55EVecKGEF0olXiU2zkW3UGnXIA7o7hhnuUGPxwhhZeGtKFxuHEqI-7BUzkr3EJiR6DAK4oRXRP0uUulUjnOIj3e8S23Sgc1mcDJbs5ZT8ozjrOJb5hk1KQu92IEXrexpxdXxR6n1Zoyz2l7nGRGr6RCy14Hn7W3sWDo-MaWbnaNMTM4bHRV34EGlEu1nhIzJ18fq6gVlaQWIxXvxTjn9HNi8E82VlvjO10FZ_lLzbDT-cBBKj_5F-BmsjHYH2f7e8P1juMkpJieE46zDEmqBewLX7Ncv0_nZ09p6fgExbB7I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+Assessment+of+Methods+of+Protein+Structure+Prediction+%28CASP%29+%E2%80%93+Round+XIV&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Kryshtafovych%2C+Andriy&rft.au=Schwede%2C+Torsten&rft.au=Topf%2C+Maya&rft.au=Fidelis%2C+Krzysztof&rft.date=2021-12-01&rft.issn=0887-3585&rft.eissn=1097-0134&rft.volume=89&rft.issue=12&rft.spage=1607&rft.epage=1617&rft_id=info:doi/10.1002%2Fprot.26237&rft_id=info%3Apmid%2F34533838&rft.externalDocID=PMC8726744 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon |