Critical assessment of methods of protein structure prediction (CASP)—Round XIV

Critical assessment of structure prediction (CASP) is a community experiment to advance methods of computing three‐dimensional protein structure from amino acid sequence. Core components are rigorous blind testing of methods and evaluation of the results by independent assessors. In the most recent...

Full description

Saved in:
Bibliographic Details
Published in:Proteins, structure, function, and bioinformatics Vol. 89; no. 12; pp. 1607 - 1617
Main Authors: Kryshtafovych, Andriy, Schwede, Torsten, Topf, Maya, Fidelis, Krzysztof, Moult, John
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01.12.2021
Wiley Subscription Services, Inc
Subjects:
ISSN:0887-3585, 1097-0134, 1097-0134
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Critical assessment of structure prediction (CASP) is a community experiment to advance methods of computing three‐dimensional protein structure from amino acid sequence. Core components are rigorous blind testing of methods and evaluation of the results by independent assessors. In the most recent experiment (CASP14), deep‐learning methods from one research group consistently delivered computed structures rivaling the corresponding experimental ones in accuracy. In this sense, the results represent a solution to the classical protein‐folding problem, at least for single proteins. The models have already been shown to be capable of providing solutions for problematic crystal structures, and there are broad implications for the rest of structural biology. Other research groups also substantially improved performance. Here, we describe these results and outline some of the many implications. Other related areas of CASP, including modeling of protein complexes, structure refinement, estimation of model accuracy, and prediction of inter‐residue contacts and distances, are also described.
AbstractList Critical assessment of structure prediction (CASP) is a community experiment to advance methods of computing three‐dimensional protein structure from amino acid sequence. Core components are rigorous blind testing of methods and evaluation of the results by independent assessors. In the most recent experiment (CASP14), deep‐learning methods from one research group consistently delivered computed structures rivaling the corresponding experimental ones in accuracy. In this sense, the results represent a solution to the classical protein‐folding problem, at least for single proteins. The models have already been shown to be capable of providing solutions for problematic crystal structures, and there are broad implications for the rest of structural biology. Other research groups also substantially improved performance. Here, we describe these results and outline some of the many implications. Other related areas of CASP, including modeling of protein complexes, structure refinement, estimation of model accuracy, and prediction of inter‐residue contacts and distances, are also described.
CASP is a community experiment to advance methods of computing three-dimensional protein structure from amino acid sequence. Core components are rigorous blind testing of methods and evaluation of the results by independent assessors. In the most recent experiment (CASP14) deep learning methods from one research group consistently delivered computed structures rivalling the corresponding experimental ones in accuracy. In this sense, the results represent a solution to the classical protein folding problem, at least for single proteins. The models have already been shown to be capable of providing solutions for problematic crystal structures, and there are broad implications for the rest of structural biology. Other research groups also substantially improved performance. Here we describe these results and outline some of the many implications. Other related areas of CASP, including modeling of protein complexes, structure refinement, estimation of model accuracy, and prediction of inter-residue contacts and distances, are also described.
Critical assessment of structure prediction (CASP) is a community experiment to advance methods of computing three-dimensional protein structure from amino acid sequence. Core components are rigorous blind testing of methods and evaluation of the results by independent assessors. In the most recent experiment (CASP14), deep-learning methods from one research group consistently delivered computed structures rivaling the corresponding experimental ones in accuracy. In this sense, the results represent a solution to the classical protein-folding problem, at least for single proteins. The models have already been shown to be capable of providing solutions for problematic crystal structures, and there are broad implications for the rest of structural biology. Other research groups also substantially improved performance. Here, we describe these results and outline some of the many implications. Other related areas of CASP, including modeling of protein complexes, structure refinement, estimation of model accuracy, and prediction of inter-residue contacts and distances, are also described.Critical assessment of structure prediction (CASP) is a community experiment to advance methods of computing three-dimensional protein structure from amino acid sequence. Core components are rigorous blind testing of methods and evaluation of the results by independent assessors. In the most recent experiment (CASP14), deep-learning methods from one research group consistently delivered computed structures rivaling the corresponding experimental ones in accuracy. In this sense, the results represent a solution to the classical protein-folding problem, at least for single proteins. The models have already been shown to be capable of providing solutions for problematic crystal structures, and there are broad implications for the rest of structural biology. Other research groups also substantially improved performance. Here, we describe these results and outline some of the many implications. Other related areas of CASP, including modeling of protein complexes, structure refinement, estimation of model accuracy, and prediction of inter-residue contacts and distances, are also described.
Author Topf, Maya
Schwede, Torsten
Kryshtafovych, Andriy
Fidelis, Krzysztof
Moult, John
AuthorAffiliation 1 Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
3 Centre for Structural Systems Biology, Leibniz-Institut für Experimentelle Virologie and Universit tsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
4 Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA, Department of Cell Biology and Molecular Genetics, University of Maryland
2 University of Basel, Biozentrum & SIB Swiss Institute of Bioinformatics, Basel, Switzerland
AuthorAffiliation_xml – name: 1 Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
– name: 3 Centre for Structural Systems Biology, Leibniz-Institut für Experimentelle Virologie and Universit tsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
– name: 2 University of Basel, Biozentrum & SIB Swiss Institute of Bioinformatics, Basel, Switzerland
– name: 4 Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA, Department of Cell Biology and Molecular Genetics, University of Maryland
Author_xml – sequence: 1
  givenname: Andriy
  orcidid: 0000-0001-5066-7178
  surname: Kryshtafovych
  fullname: Kryshtafovych, Andriy
  organization: Genome Center, University of California, Davis
– sequence: 2
  givenname: Torsten
  orcidid: 0000-0003-2715-335X
  surname: Schwede
  fullname: Schwede, Torsten
  organization: University of Basel, Biozentrum & SIB Swiss Institute of Bioinformatics
– sequence: 3
  givenname: Maya
  orcidid: 0000-0002-8185-1215
  surname: Topf
  fullname: Topf, Maya
  organization: Centre for Structural Systems Biology, Leibniz‐Institut für Experimentelle Virologie and Universit tsklinikum Hamburg‐Eppendorf (UKE)
– sequence: 4
  givenname: Krzysztof
  orcidid: 0000-0002-8061-412X
  surname: Fidelis
  fullname: Fidelis, Krzysztof
  organization: Genome Center, University of California, Davis
– sequence: 5
  givenname: John
  orcidid: 0000-0002-3012-2282
  surname: Moult
  fullname: Moult, John
  email: jmoult@umd.edu
  organization: University of Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34533838$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9qFTEYxYO02NvqxgeQATe1cGuSL5PkbgrlYv9AobVWcRcymYxNmUmuScbSnQ_hE_okZrytaBFXCcnvHM53vm204YO3CL0geJ9gTN-sYsj7lFMQT9CM4IWYYwJsA82wlGIOtay30HZKNxhjvgD-FG0BqwEkyBl6t4wuO6P7SqdkUxqsz1XoqsHm69Cm6TrZW-erlONo8hhtebGtM9kFX-0uD99fvP7x7ftlGH1bfTr9-AxtdrpP9vn9uYM-HL29Wp7Mz86PT5eHZ3NTE1ZiSSxANIy2TUuBQwecy45LUzdAWr4gGiQhWFtDNRFMAxjWdgZa22hbCNhBB2vf1dgMtjUleNS9WkU36Hingnbq7x_vrtXn8FVJQblgrBjs3hvE8GW0KavBJWP7XnsbxqRoLRgsMKMT-uoRehPG6Mt4inJMBJZ1PVEv_0z0O8pD2wXAa8DEkFK0nTIu66nHEtD1imA1LVRNjatfCy2SvUeSB9d_wmQN37re3v2HVBeX51drzU-PobI1
CitedBy_id crossref_primary_10_1021_acs_jcim_5c00797
crossref_primary_10_1016_j_crfs_2025_101146
crossref_primary_10_1126_science_abm8295
crossref_primary_10_1016_j_csbj_2023_06_001
crossref_primary_10_1007_s00439_025_02731_3
crossref_primary_10_3389_fmolb_2022_935411
crossref_primary_10_3103_S0027131424700238
crossref_primary_10_1002_adma_202204272
crossref_primary_10_1080_07391102_2023_2175384
crossref_primary_10_1002_prot_26223
crossref_primary_10_1016_j_cell_2025_03_034
crossref_primary_10_1038_s42003_023_05610_7
crossref_primary_10_1002_prot_26584
crossref_primary_10_1146_annurev_food_060721_022222
crossref_primary_10_1093_bioadv_vbae099
crossref_primary_10_1093_nar_gkad242
crossref_primary_10_1155_vmi_2638167
crossref_primary_10_7554_eLife_94029_3
crossref_primary_10_1038_s41467_024_48225_0
crossref_primary_10_1038_s41598_023_41556_w
crossref_primary_10_1016_j_cels_2023_10_006
crossref_primary_10_1038_s41596_022_00728_0
crossref_primary_10_1016_j_ejmech_2024_116262
crossref_primary_10_1002_wcms_70016
crossref_primary_10_1002_prot_26598
crossref_primary_10_3390_ijms23073685
crossref_primary_10_1002_prot_26593
crossref_primary_10_1002_prot_26471
crossref_primary_10_3390_ijms242115858
crossref_primary_10_1016_j_jmb_2024_168494
crossref_primary_10_3390_biology14091268
crossref_primary_10_3390_biom15010141
crossref_primary_10_1016_j_pnmrs_2024_101556
crossref_primary_10_1038_s41598_024_71783_8
crossref_primary_10_1002_prot_26246
crossref_primary_10_1007_s00439_024_02680_3
crossref_primary_10_1002_pro_70110
crossref_primary_10_7554_eLife_89386
crossref_primary_10_1038_s41467_025_56261_7
crossref_primary_10_1038_s42004_023_00991_6
crossref_primary_10_1093_jamia_ocad159
crossref_primary_10_1002_prot_26802
crossref_primary_10_1038_s42003_024_07359_z
crossref_primary_10_1088_1478_3975_acd543
crossref_primary_10_2174_1574893618666230412080702
crossref_primary_10_1002_prot_26247
crossref_primary_10_1016_j_bpj_2024_01_021
crossref_primary_10_1261_rna_080416_125
crossref_primary_10_1016_j_csbj_2024_01_019
crossref_primary_10_1038_s41598_023_31126_5
crossref_primary_10_1002_pro_4466
crossref_primary_10_1002_prot_26805
crossref_primary_10_1038_s41598_023_46969_1
crossref_primary_10_1016_j_sbi_2024_102775
crossref_primary_10_1107_S2052252523004943
crossref_primary_10_1002_cbic_202400092
crossref_primary_10_1002_prot_26257
crossref_primary_10_1016_j_ebiom_2024_105333
crossref_primary_10_1002_prot_26496
crossref_primary_10_1016_j_ymeth_2023_07_003
crossref_primary_10_1002_prot_70016
crossref_primary_10_1107_S2059798322002157
crossref_primary_10_1073_pnas_2315002121
crossref_primary_10_1002_prot_26533
crossref_primary_10_3390_biology12020182
crossref_primary_10_1016_j_isci_2023_106911
crossref_primary_10_1038_s41592_021_01361_7
crossref_primary_10_1038_s42256_023_00721_6
crossref_primary_10_3389_fmolb_2022_877000
crossref_primary_10_1177_11779322251358314
crossref_primary_10_1093_nargab_lqae150
crossref_primary_10_1107_S2059798322011676
crossref_primary_10_1107_S2052252523010291
crossref_primary_10_2478_amma_2024_0002
crossref_primary_10_1371_journal_pcbi_1012912
crossref_primary_10_1109_TEVC_2022_3220187
crossref_primary_10_1002_pro_70015
crossref_primary_10_1016_j_jmb_2023_168067
crossref_primary_10_3389_fmolb_2024_1360267
crossref_primary_10_3389_fmicb_2022_943379
crossref_primary_10_1002_prot_26545
crossref_primary_10_1038_s43586_023_00284_1
crossref_primary_10_7554_eLife_89386_2
crossref_primary_10_1038_s41577_023_00835_3
crossref_primary_10_1371_journal_pone_0320177
crossref_primary_10_1016_j_bpc_2022_106769
crossref_primary_10_1016_j_tifs_2025_105216
crossref_primary_10_1002_prot_26552
crossref_primary_10_1002_wcms_1690
crossref_primary_10_1016_j_cpc_2024_109112
crossref_primary_10_1093_bioadv_vbae187
crossref_primary_10_1093_nar_gkad297
crossref_primary_10_1007_s00239_024_10174_z
crossref_primary_10_1016_j_jmgm_2025_109055
crossref_primary_10_3390_ijms242115656
crossref_primary_10_3390_ijms241310720
crossref_primary_10_1107_S2059798323004928
crossref_primary_10_1093_bioinformatics_btae497
crossref_primary_10_3390_v16091358
crossref_primary_10_1002_pro_4318
crossref_primary_10_1016_j_str_2025_08_007
crossref_primary_10_1017_qrd_2022_13
crossref_primary_10_1098_rsif_2024_0886
crossref_primary_10_3389_fmolb_2024_1414916
crossref_primary_10_1002_prot_26441
crossref_primary_10_1016_j_tibtech_2025_04_021
crossref_primary_10_3390_life12030363
crossref_primary_10_1093_nsr_nwad259
crossref_primary_10_3923_jms_2025_1_10
crossref_primary_10_1016_j_csbj_2023_01_036
crossref_primary_10_3389_fchem_2022_863118
crossref_primary_10_1002_prot_26569
crossref_primary_10_3389_fmolb_2022_906437
crossref_primary_10_1007_s12539_024_00622_1
crossref_primary_10_1016_j_jmb_2023_167994
crossref_primary_10_1038_s41467_021_27838_9
crossref_primary_10_1016_j_jmr_2023_107481
crossref_primary_10_1016_j_compbiomed_2024_108815
crossref_primary_10_1063_4_0000765
crossref_primary_10_1038_s41586_024_07510_0
crossref_primary_10_1007_s00249_023_01636_1
crossref_primary_10_1038_s41592_022_01488_1
crossref_primary_10_1007_s12551_025_01329_3
crossref_primary_10_1073_pnas_2221745120
crossref_primary_10_3390_ijms23169502
crossref_primary_10_1002_prot_26453
crossref_primary_10_1002_prot_26452
crossref_primary_10_3390_biom14030339
crossref_primary_10_1371_journal_pcbi_1013216
crossref_primary_10_3389_fmolb_2022_968424
crossref_primary_10_1002_prot_26617
crossref_primary_10_1016_j_gpb_2022_11_014
crossref_primary_10_1016_j_jmb_2025_169128
crossref_primary_10_1016_j_jmb_2024_168551
crossref_primary_10_1186_s13059_023_02962_5
crossref_primary_10_1038_s41598_024_67023_8
crossref_primary_10_1016_j_rineng_2024_103435
crossref_primary_10_3390_molecules28104047
crossref_primary_10_1093_nar_gkad1011
crossref_primary_10_1126_science_ads0018
crossref_primary_10_1007_s10462_025_11325_4
crossref_primary_10_1073_pnas_2313816120
crossref_primary_10_3390_molecules28227462
crossref_primary_10_4049_jimmunol_2300150
crossref_primary_10_55071_ticaretfbd_1323165
crossref_primary_10_1039_D2RA06433B
crossref_primary_10_1016_j_csbj_2025_08_028
crossref_primary_10_1016_j_jmb_2023_168021
crossref_primary_10_1039_D5CP01448D
crossref_primary_10_1002_pro_4524
crossref_primary_10_1016_j_bpj_2022_11_011
crossref_primary_10_1371_journal_pcbi_1012302
crossref_primary_10_1186_s12859_023_05370_5
crossref_primary_10_1371_journal_pcbi_1010483
crossref_primary_10_1038_s43588_024_00714_4
crossref_primary_10_1016_j_sbi_2023_102539
crossref_primary_10_1016_j_crstbi_2025_100167
crossref_primary_10_1016_j_cis_2024_103342
crossref_primary_10_1038_s41587_025_02654_4
crossref_primary_10_1186_s40246_024_00655_z
crossref_primary_10_3389_fmolb_2023_1214424
crossref_primary_10_1002_prot_26515
crossref_primary_10_1073_pnas_2311807121
crossref_primary_10_1002_advs_202404786
crossref_primary_10_1016_j_jmr_2022_107268
crossref_primary_10_1371_journal_pone_0286540
crossref_primary_10_1038_s41576_023_00679_6
crossref_primary_10_1038_s41592_025_02819_8
crossref_primary_10_1038_s41598_024_69021_2
crossref_primary_10_1371_journal_pone_0281642
crossref_primary_10_1093_nar_gkae270
crossref_primary_10_1186_s13321_024_00884_3
crossref_primary_10_1186_s12859_024_05991_4
crossref_primary_10_1016_j_sbi_2023_102627
crossref_primary_10_1038_s41592_023_02087_4
crossref_primary_10_1038_s41573_025_01273_7
crossref_primary_10_1002_ctm2_1789
crossref_primary_10_1038_s41592_022_01645_6
crossref_primary_10_46740_alku_1522590
crossref_primary_10_1016_j_compbiomed_2025_109842
crossref_primary_10_1093_bib_bbaf104
crossref_primary_10_2174_0109298673263447230920151524
crossref_primary_10_1016_j_drudis_2024_104025
crossref_primary_10_3390_ijms231911685
crossref_primary_10_1002_pro_4503
crossref_primary_10_1016_j_jbc_2022_101932
crossref_primary_10_1038_s41467_023_44593_1
crossref_primary_10_1038_s41392_023_01381_z
crossref_primary_10_1093_bib_bbac502
crossref_primary_10_1002_prot_26653
crossref_primary_10_1016_j_csbj_2022_11_032
crossref_primary_10_1038_s42003_022_03502_w
crossref_primary_10_3389_fbioe_2023_1051268
crossref_primary_10_3390_ph15030310
crossref_primary_10_3390_molecules29122838
crossref_primary_10_1016_j_sbi_2024_102819
crossref_primary_10_1186_s12859_023_05354_5
crossref_primary_10_1126_science_ade2574
crossref_primary_10_1016_j_csbr_2025_100062
crossref_primary_10_1146_annurev_biophys_102622_084607
crossref_primary_10_1016_j_csbj_2022_12_039
crossref_primary_10_1002_advs_202309051
crossref_primary_10_1093_bib_bbac267
crossref_primary_10_1146_annurev_virology_100520_011851
crossref_primary_10_1016_j_csbj_2025_05_009
crossref_primary_10_1107_S205979832300102X
crossref_primary_10_3390_biom12111665
crossref_primary_10_1111_imr_13236
crossref_primary_10_1038_s41598_022_14055_7
crossref_primary_10_1107_S2059798322009986
crossref_primary_10_12677_HJCB_2023_131001
crossref_primary_10_1016_j_pnmrs_2022_09_001
crossref_primary_10_3390_app15063283
crossref_primary_10_1002_prot_26705
crossref_primary_10_1021_jacs_5c00656
crossref_primary_10_1073_pnas_2305013120
crossref_primary_10_1093_bib_bbad100
crossref_primary_10_1002_prot_26828
crossref_primary_10_1038_s41598_023_45200_5
crossref_primary_10_1107_S2053230X23004934
crossref_primary_10_1016_j_compbiomed_2022_105695
crossref_primary_10_3389_fmolb_2022_909567
crossref_primary_10_3390_biom12020147
crossref_primary_10_1016_j_bpj_2024_04_001
crossref_primary_10_1186_s13059_023_03113_6
crossref_primary_10_1186_s13321_024_00821_4
crossref_primary_10_1016_j_csbj_2025_01_001
crossref_primary_10_1016_j_tibs_2023_03_003
crossref_primary_10_1002_imt2_9
crossref_primary_10_1038_s42003_023_04488_9
crossref_primary_10_1016_j_sbi_2023_102542
crossref_primary_10_58240_1829006X_2025_21_6_361
crossref_primary_10_1038_s44386_025_00019_0
crossref_primary_10_1002_adsr_202300053
crossref_primary_10_7554_eLife_94029
crossref_primary_10_1002_2211_5463_13902
crossref_primary_10_1038_s42256_023_00741_2
crossref_primary_10_1093_bib_bbae338
crossref_primary_10_1002_pro_5112
crossref_primary_10_1038_s41592_023_02130_4
crossref_primary_10_1246_cl_220172
crossref_primary_10_1016_j_jmgm_2023_108430
crossref_primary_10_1038_s42003_022_03261_8
crossref_primary_10_1007_s00792_024_01341_7
crossref_primary_10_1016_j_csbj_2023_10_056
crossref_primary_10_1093_bib_bbac152
crossref_primary_10_1186_s12864_021_08181_1
crossref_primary_10_1002_pro_5115
crossref_primary_10_1002_prot_26172
crossref_primary_10_1002_prot_26171
crossref_primary_10_1002_nadc_20244143087
crossref_primary_10_1038_s41467_024_54816_8
crossref_primary_10_1016_j_semcancer_2023_06_005
crossref_primary_10_1002_2211_5463_13593
crossref_primary_10_1002_pmic_202300397
crossref_primary_10_1093_nar_gkac340
Cites_doi 10.1002/prot.25804
10.1093/nar/gkg571
10.1016/j.sbi.2019.12.016
10.1016/j.neucom.2021.03.091
10.1038/nrg3414
10.1016/0022-2836(91)90721-H
10.1002/prot.25837
10.1002/prot.26231
10.1002/prot.26138
10.1002/prot.26225
10.1002/prot.25834
10.1002/prot.26246
10.1038/s41586-021-03819-2
10.1002/prot.25823
10.1002/prot.26171
10.1002/prot.26223
10.1038/s41564-021-00895-y
10.1016/0014-5793(92)80892-K
10.1002/prot.26248
10.1002/prot.26172
10.1002/prot.26214
10.1002/prot.25827
10.1126/science.181.4096.223
10.1002/prot.26199
10.1002/pro.3588
10.1093/protein/7.8.953
10.1002/prot.26192
10.1002/prot.26247
10.1126/science.1219021
10.1002/prot.26209
10.1016/j.bpj.2014.08.033
10.1002/prot.26197
10.1110/ps.0201402
10.1002/prot.26222
10.1051/jcp/1968650044
10.1002/prot.26185
10.1002/prot.25816
10.1002/prot.26235
10.1007/s10822-020-00317-x
10.1002/prot.24943
10.1002/prot.25779
10.1002/prot.10052
10.1002/prot.25870
10.1002/prot.24448
10.1002/prot.26202
10.1002/prot.26257
10.1002/prot.25407
10.1002/prot.10454
10.1126/science.abj8754
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.1002/prot.26237
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1097-0134
EndPage 1617
ExternalDocumentID PMC8726744
34533838
10_1002_prot_26237
PROT26237
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of General Medical Sciences
  funderid: R01GM100482
– fundername: NIGMS NIH HHS
  grantid: R01 GM100482
– fundername: Medical Research Council
  grantid: G0600084
– fundername: Medical Research Council
  grantid: MR/N009614/1
GroupedDBID -~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5147-380737b42dbd2363f3668f68c5b31d691a38110aec2a174a33c4dfc3debae31d3
IEDL.DBID DRFUL
ISICitedReferencesCount 324
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704287100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0887-3585
1097-0134
IngestDate Tue Nov 04 02:06:52 EST 2025
Wed Oct 01 14:01:16 EDT 2025
Sat Nov 29 15:07:53 EST 2025
Mon Jul 21 06:03:11 EDT 2025
Tue Nov 18 20:49:29 EST 2025
Sat Nov 29 01:48:13 EST 2025
Wed Jan 22 16:27:00 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Alphafold
community wide experiment
protein folding
CASP
protein structure prediction
Language English
License 2021 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5147-380737b42dbd2363f3668f68c5b31d691a38110aec2a174a33c4dfc3debae31d3
Notes Funding information
National Institute of General Medical Sciences, Grant/Award Number: R01GM100482
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2715-335X
0000-0002-8185-1215
0000-0002-3012-2282
0000-0001-5066-7178
0000-0002-8061-412X
PMID 34533838
PQID 2601708554
PQPubID 1016441
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8726744
proquest_miscellaneous_2574390424
proquest_journals_2601708554
pubmed_primary_34533838
crossref_citationtrail_10_1002_prot_26237
crossref_primary_10_1002_prot_26237
wiley_primary_10_1002_prot_26237_PROT26237
PublicationCentury 2000
PublicationDate December 2021
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hokoben
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 89
2021; 6
2021; 89
1973; 181
2020; 61
2002; 11
1992; 307
2020; 34
2001; 45
2014; 82
2018; 86
2003; 31
2003; 53
1968; 65
1991; 218
2014; 107
2013; 14
2021; 596
2019; 87
2019; 28
2016; 84
2021; 373
2020; 88
2021; 452
2012; 338
1994; 7
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 89
  start-page: 1700
  issue: 12
  year: 2021
  end-page: 1710
  article-title: Assessment of domain interactions in CASP14
  publication-title: Proteins
– volume: 89
  start-page: 1633
  issue: 12
  year: 2021
  end-page: 1646
  article-title: Computational models in the service of X‐ray and cryo‐EM structure determination
  publication-title: Proteins
– volume: 87
  start-page: 1092
  issue: 12
  year: 2019
  end-page: 1099
  article-title: Prediction of interresidue contacts with DeepMetaPSICOV in CASP13
  publication-title: Proteins
– volume: 307
  start-page: 10
  issue: 1
  year: 1992
  end-page: 13
  article-title: Concepts in protein folding
  publication-title: FEBS Lett
– volume: 53
  start-page: 76
  issue: 1
  year: 2003
  end-page: 87
  article-title: An improved protein decoy set for testing energy functions for protein structure prediction
  publication-title: Proteins
– volume: 89
  start-page: 1852
  issue: 12
  year: 2021
  end-page: 1869
  article-title: Evaluation of model refinement in CASP14
  publication-title: Proteins
– volume: 31
  start-page: 3370
  issue: 13
  year: 2003
  end-page: 3374
  article-title: LGA: a method for finding 3D similarities in protein structures
  publication-title: Nucleic Acids Res
– volume: 65
  start-page: 44
  year: 1968
  end-page: 45
  article-title: Are there pathways for protein folding?
  publication-title: J Chim Phys
– volume: 45
  start-page: 13
  issue: S5
  year: 2001
  end-page: 21
  article-title: Processing and evaluation of predictions in CASP4
  publication-title: Proteins
– volume: 89
  start-page: 1673
  issue: 12
  year: 2021
  end-page: 1686
  article-title: Topology evaluation of models for difficult targets in the 14th round of the critical assessment of protein structure prediction (CASP14)
  publication-title: Proteins
– volume: 7
  start-page: 953
  issue: 8
  year: 1994
  end-page: 960
  article-title: Comparison of systematic search and database methods for constructing segments of protein structure
  publication-title: Protein Eng
– volume: 34
  start-page: 709
  issue: 7
  year: 2020
  end-page: 715
  article-title: Artificial intelligence in chemistry and drug design
  publication-title: J Comput Aided Mol Des
– volume: 89
  start-page: 1787
  issue: 12
  year: 2021
  end-page: 1799
  article-title: Assessment of the CASP14 assembly predictions
  publication-title: Proteins
– volume: 338
  start-page: 1042
  issue: 6110
  year: 2012
  end-page: 1046
  article-title: The protein‐folding problem, 50 years on
  publication-title: Science
– volume: 89
  start-page: 1647
  issue: 12
  year: 2021
  end-page: 1672
  article-title: Target s in CASP14: analysis of models by structure providers
  publication-title: Proteins
– volume: 89
  start-page: 1618
  issue: 12
  year: 2021
  end-page: 1632
  article-title: Target classification in the 14th round of the critical assessment of protein structure prediction (CASP14)
  publication-title: Proteins
– volume: 373
  start-page: 871
  issue: 6557
  year: 2021
  end-page: 876
  article-title: Accurate prediction of protein structures and interactions using a three‐track neural network
  publication-title: Science
– volume: 89
  start-page: 1940
  issue: 12
  year: 2021
  end-page: 1948
  article-title: Assessment of protein model structure accuracy estimation in CASP14: old and new challenges
  publication-title: Proteins
– volume: 181
  start-page: 223
  issue: 4096
  year: 1973
  end-page: 230
  article-title: Principles that govern the folding of protein chains
  publication-title: Science
– volume: 11
  start-page: 1285
  issue: 6
  year: 2002
  end-page: 1299
  article-title: 3D domain swapping: as domains continue to swap
  publication-title: Protein Sci
– volume: 89
  start-page: 1800
  issue: 12
  year: 2021
  end-page: 1823
  article-title: Prediction of protein assemblies, the next frontier: the CASP14‐CAPRI experiment
  publication-title: Proteins
– volume: 86
  start-page: 51
  issue: suppl 1
  year: 2018
  end-page: 66
  article-title: Assessment of contact predictions in CASP12: co‐evolution and deep learning coming of age
  publication-title: Proteins
– volume: 89
  start-page: 1824
  issue: 12
  year: 2021
  end-page: 1833
  article-title: Protein oligomer modeling guided by predicted interchain contacts in CASP14
  publication-title: Proteins
– volume: 89
  start-page: 1987
  issue: 12
  year: 2021
  end-page: 1996
  article-title: Modeling SARS‐CoV2 proteins in the CASP‐commons experiment
  publication-title: Proteins
– volume: 28
  start-page: 678
  issue: 4
  year: 2019
  end-page: 683
  article-title: What has de novo protein design taught us about protein folding and biophysics?
  publication-title: Protein Sci
– volume: 89
  start-page: 1752
  issue: 12
  year: 2021
  end-page: 1769
  article-title: Assessing the utility of CASP14 models for molecular replacement
  publication-title: Proteins
– volume: 87
  start-page: 1283
  issue: 12
  year: 2019
  end-page: 1297
  article-title: Assessment of chemical‐crosslink‐assisted protein structure modeling in CASP13
  publication-title: Proteins
– volume: 107
  start-page: 1785
  issue: 8
  year: 2014
  end-page: 1793
  article-title: Protein‐protein docking: from interaction to interactome
  publication-title: Biophys J
– volume: 87
  start-page: 1011
  issue: 12
  year: 2019
  end-page: 1020
  article-title: Critical assessment of methods of protein structure prediction (CASP)‐round XIII
  publication-title: Proteins
– volume: 87
  start-page: 1298
  issue: 12
  year: 2019
  end-page: 1314
  article-title: Small angle X‐ray scattering‐assisted protein structure prediction in CASP13 and emergence of solution structure differences
  publication-title: Proteins
– volume: 6
  start-page: 712
  issue: 6
  year: 2021
  end-page: 721
  article-title: Molecular structure of the intact bacterial flagellar basal body
  publication-title: Nat Microbiol
– volume: 87
  start-page: 1315
  issue: 12
  year: 2019
  end-page: 1332
  article-title: Protein structure prediction assisted with sparse NMR data in CASP13
  publication-title: Proteins
– volume: 89
  start-page: 1888
  issue: 12
  year: 2021
  end-page: 1900
  article-title: Assessing the accuracy of contact and distance predictions in CASP14
  publication-title: Proteins: Structure, Function, and Bioinformatics
– volume: 89
  start-page: 1687
  issue: 12
  year: 2021
  end-page: 1699
  article-title: High‐accuracy protein structure prediction in CASP14
  publication-title: Proteins
– volume: 89
  start-page: 1711
  issue: 12
  end-page: 1721
– volume: 89
  start-page: 1959
  issue: 12
  year: 2021
  end-page: 1976
  article-title: Assessment of prediction methods for protein structures determined by NMR in CASP14: impact of AlphaFold2
  publication-title: Proteins
– volume: 61
  start-page: 139
  year: 2020
  end-page: 145
  article-title: Machine learning approaches for analyzing and enhancing molecular dynamics simulations
  publication-title: Curr Opin Struct Biol
– volume: 89
  start-page: 1226
  issue: 9
  year: 2021
  end-page: 1228
  article-title: AlphaFold2 predicts the inward‐facing conformation of the multidrug transporter LmrP
  publication-title: Proteins
– volume: 89
  start-page: 1922
  issue: 12
  year: 2021
  end-page: 1939
  article-title: Assessing the binding properties of CASP14 targets and models
  publication-title: Proteins
– volume: 218
  start-page: 397
  issue: 2
  year: 1991
  end-page: 412
  article-title: Influence of proline residues on protein conformation
  publication-title: J Mol Biol
– volume: 88
  start-page: 916
  issue: 8
  year: 2020
  end-page: 938
  article-title: Modeling protein‐protein, protein‐peptide, and protein‐oligosaccharide complexes: CAPRI 7th edition
  publication-title: Proteins
– volume: 89
  start-page: 1770
  issue: 12
  year: 2021
  end-page: 1786
  article-title: Protein sequence‐to‐structure learning: is this the end(−to‐ end revolution)?
  publication-title: Proteins
– volume: 82
  start-page: 164
  issue: suppl 2
  year: 2014
  end-page: 174
  article-title: CASP10 results compared to those of previous CASP experiments
  publication-title: Proteins
– volume: 14
  start-page: 249
  issue: 4
  year: 2013
  end-page: 261
  article-title: Emerging methods in protein co‐evolution
  publication-title: Nat Rev Genet
– volume: 452
  start-page: 48
  year: 2021
  end-page: 62
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
– volume: 84
  start-page: 131
  issue: suppl 1
  year: 2016
  end-page: 144
  article-title: New encouraging developments in contact prediction: assessment of the CASP11 results
  publication-title: Proteins
– volume: 87
  start-page: 1351
  issue: 12
  year: 2019
  end-page: 1360
  article-title: Assessment of protein model structure accuracy estimation in CASP13: challenges in the era of deep learning
  publication-title: Proteins
– volume: 596
  start-page: 583
  issue: 7873
  year: 2021
  end-page: 589
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
– volume: 87
  start-page: 1141
  issue: 12
  year: 2019
  end-page: 1148
  article-title: Protein structure prediction using multiple deep neural networks in CASP13
  publication-title: Proteins
– ident: e_1_2_7_32_1
  doi: 10.1002/prot.25804
– ident: e_1_2_7_25_1
  doi: 10.1093/nar/gkg571
– ident: e_1_2_7_31_1
  doi: 10.1016/j.sbi.2019.12.016
– ident: e_1_2_7_41_1
  doi: 10.1016/j.neucom.2021.03.091
– ident: e_1_2_7_35_1
  doi: 10.1038/nrg3414
– ident: e_1_2_7_50_1
  doi: 10.1016/0022-2836(91)90721-H
– ident: e_1_2_7_16_1
  doi: 10.1002/prot.25837
– ident: e_1_2_7_17_1
  doi: 10.1002/prot.26231
– ident: e_1_2_7_48_1
  doi: 10.1002/prot.26138
– ident: e_1_2_7_10_1
  doi: 10.1002/prot.26225
– ident: e_1_2_7_37_1
  doi: 10.1002/prot.25834
– ident: e_1_2_7_20_1
  doi: 10.1002/prot.26246
– ident: e_1_2_7_39_1
  doi: 10.1038/s41586-021-03819-2
– ident: e_1_2_7_19_1
  doi: 10.1002/prot.25823
– ident: e_1_2_7_2_1
  doi: 10.1002/prot.26171
– ident: e_1_2_7_13_1
  doi: 10.1002/prot.26223
– ident: e_1_2_7_21_1
  doi: 10.1038/s41564-021-00895-y
– ident: e_1_2_7_44_1
  doi: 10.1016/0014-5793(92)80892-K
– ident: e_1_2_7_6_1
  doi: 10.1002/prot.26248
– ident: e_1_2_7_3_1
  doi: 10.1002/prot.26172
– ident: e_1_2_7_49_1
  doi: 10.1002/prot.26214
– ident: e_1_2_7_14_1
  doi: 10.1002/prot.25827
– ident: e_1_2_7_26_1
  doi: 10.1126/science.181.4096.223
– ident: e_1_2_7_4_1
  doi: 10.1002/prot.26199
– ident: e_1_2_7_47_1
  doi: 10.1002/pro.3588
– ident: e_1_2_7_46_1
  doi: 10.1093/protein/7.8.953
– ident: e_1_2_7_8_1
  doi: 10.1002/prot.26192
– ident: e_1_2_7_12_1
  doi: 10.1002/prot.26247
– ident: e_1_2_7_45_1
  doi: 10.1126/science.1219021
– ident: e_1_2_7_9_1
  doi: 10.1002/prot.26209
– ident: e_1_2_7_28_1
  doi: 10.1016/j.bpj.2014.08.033
– ident: e_1_2_7_23_1
  doi: 10.1002/prot.26197
– ident: e_1_2_7_40_1
– ident: e_1_2_7_22_1
  doi: 10.1110/ps.0201402
– ident: e_1_2_7_5_1
  doi: 10.1002/prot.26222
– ident: e_1_2_7_43_1
  doi: 10.1051/jcp/1968650044
– ident: e_1_2_7_7_1
  doi: 10.1002/prot.26185
– ident: e_1_2_7_15_1
  doi: 10.1002/prot.25816
– ident: e_1_2_7_38_1
  doi: 10.1002/prot.26235
– ident: e_1_2_7_51_1
  doi: 10.1007/s10822-020-00317-x
– ident: e_1_2_7_33_1
  doi: 10.1002/prot.24943
– ident: e_1_2_7_36_1
  doi: 10.1002/prot.25779
– ident: e_1_2_7_24_1
  doi: 10.1002/prot.10052
– ident: e_1_2_7_27_1
  doi: 10.1002/prot.25870
– ident: e_1_2_7_18_1
  doi: 10.1002/prot.24448
– ident: e_1_2_7_11_1
  doi: 10.1002/prot.26202
– ident: e_1_2_7_42_1
  doi: 10.1002/prot.26257
– ident: e_1_2_7_34_1
  doi: 10.1002/prot.25407
– ident: e_1_2_7_30_1
  doi: 10.1002/prot.10454
– ident: e_1_2_7_29_1
  doi: 10.1126/science.abj8754
SSID ssj0006936
Score 2.7243576
Snippet Critical assessment of structure prediction (CASP) is a community experiment to advance methods of computing three‐dimensional protein structure from amino...
Critical assessment of structure prediction (CASP) is a community experiment to advance methods of computing three-dimensional protein structure from amino...
CASP is a community experiment to advance methods of computing three-dimensional protein structure from amino acid sequence. Core components are rigorous blind...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1607
SubjectTerms Alphafold
Amino Acid Sequence
Amino acids
CASP
community wide experiment
Computational Biology
Crystal structure
Deep learning
Model accuracy
Models, Statistical
Molecular Dynamics Simulation
Predictions
Protein Conformation
Protein Folding
Protein structure
protein structure prediction
Proteins
Proteins - chemistry
Proteins - metabolism
Sequence Analysis, Protein
Software
Title Critical assessment of methods of protein structure prediction (CASP)—Round XIV
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.26237
https://www.ncbi.nlm.nih.gov/pubmed/34533838
https://www.proquest.com/docview/2601708554
https://www.proquest.com/docview/2574390424
https://pubmed.ncbi.nlm.nih.gov/PMC8726744
Volume 89
WOSCitedRecordID wos000704287100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0134
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006936
  issn: 0887-3585
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED9BGRovbMD-lDHkaWiCSRnUduxE2kvXUTFpYl0HqG-R4zhapS1FFJD2tg_BJ-ST7M75AxVo0rQ3K74kjn1n_86-_A5gq8MzaRHqBjyPbSDT3ARGhyZwCB4ytLBQy9Qnm9CHh9FoFA_m4H39L0zJD9FsuJFl-PmaDNyk090b0lDiMXjHcfXW87DAUXFlCxY-DvvHn5uZWMU-RWBpSIiLG3pSvntz9-yCdAdl3g2WvA1i_SrUf_R_7X8MyxX6ZN1SXVZgzhWrsNYt0PP--Yu9YT4e1G-0r8Lih7r0sFdnhVuDr3VuBGYaTk82yVmZiXpKRU_9MC5YSU17cebwCh0HkQqw7V7322Dn-vfVkPI5sdGnkydw3N8_6h0EVVqGwCK6wp6McFrQqeRZmnGhRC6UinIV2TAVnUzFHYMooLNnnOUG_R0jhJVZbkXmUuNQQjyFVjEp3HNgRqK7KIgRXhHxu4ilUynOIHm4l7vYRm3YqccmsRVnOaXO-JGUbMs8oU9KfC-24XUje1oyddwrtVEPcVJZ6zQhWjXtA_ba8Kqpxo6lwxNTuMkFyoTkutFBcRuelRrRvEbIkDx9bK6e0ZVGgDi8Z2uK8XfP5R1prrTEZ771uvKXlieD4ZcjX1r_F-EXsMQpDMdH4GxAC4fevYQH9vJ8PD3bhHk9ijYru_kDkdMcRQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tb9MwED5BBxpfBmy8dAwwAiGGFLbajp18LIVqE6WU0qF-ixzH0SqNFK0Mad_2I_YL90u4c15GNYSE-GYll8Qvd_Zz9uU5gBcdnkmLUDfgeWwDmeYmMDo0gUPwkKGFhVqmPtmEHg6j6TQeVbE59C9MyQ_RbLiRZfj5mgycNqR3LllDicjgDcflW1-HFYl6FLZg5d24fzBopmIV-xyBpSUhMG74SfnO5dPLK9IVmHk1WvJ3FOuXof7t_2zAHVir8CfrlgpzF665Yh02ugX63t9O2UvmI0L9Vvs63Hxbl1Z7dV64DfhcZ0dgpmH1ZPOclbmoF1T05A-zgpXktCfHDq_QgRApAXvV634ZbV-cnY8poxOb7n-9Bwf995PeXlAlZggs4ivsyggnBp1KnqUZF0rkQqkoV5ENU9HJVNwxiAM6u8ZZbtDjMUJYmeVWZC41DiXEfWgV88I9BGYkOoyCOOEVUb-LWDqV4hySh7u5i23Uhu16cBJbsZZT8oyjpORb5gk1KfG92Ibnjez3kqvjj1Jb9Rgnlb0uEiJW0z5krw3PmtvYsXR8Ygo3P0GZkJw3Oipuw4NSJZrPCBmSr4_V1UvK0ggQi_fynWJ26Nm8I82VlvjO115Z_lLzZDT-NPGlzX8Rfgqre5OPg2SwP_zwCG5xCsrx8Thb0EI1cI_hhv35Y7Y4flKZzy_SBx9N
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1BC4UXLi2XhQJGINQipe3ajp08LltWVFTLsrTVvkWOY4uV2mzVpUi88RF8IV_CjHMpqyIkxJuVTBJfZuwz9uQMwMsuL6RFqBtxn9pI5t5ERscmcggeCrSwWMs8JJvQw2EymaSjOjaH_oWp-CHaDTeyjDBfk4G708JvX7CGEpHBFsflW1-FZRmnCu1yeXc8ONxvp2KVhhyBlSUhMG75Sfn2xdOLK9IlmHk5WvJ3FBuWocHt_2zAHbhV40_WqxTmLlxx5Sqs9Ur0vU--sVcsRISGrfZVuP6mKd3oN3nh1uBjkx2BmZbVk808q3JRz6kYyB-mJavIac_PHF6hAyFSArbR730abf78_mNMGZ3YZO_oHhwO3h7030V1YobIIr7CrkxwYtC55EVecKGEF0olXiU2zkW3UGnXIA7o7hhnuUGPxwhhZeGtKFxuHEqI-7BUzkr3EJiR6DAK4oRXRP0uUulUjnOIj3e8S23Sgc1mcDJbs5ZT8ozjrOJb5hk1KQu92IEXrexpxdXxR6n1Zoyz2l7nGRGr6RCy14Hn7W3sWDo-MaWbnaNMTM4bHRV34EGlEu1nhIzJ18fq6gVlaQWIxXvxTjn9HNi8E82VlvjO10FZ_lLzbDT-cBBKj_5F-BmsjHYH2f7e8P1juMkpJieE46zDEmqBewLX7Ncv0_nZ09p6fgExbB7I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+Assessment+of+Methods+of+Protein+Structure+Prediction+%28CASP%29+%E2%80%93+Round+XIV&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Kryshtafovych%2C+Andriy&rft.au=Schwede%2C+Torsten&rft.au=Topf%2C+Maya&rft.au=Fidelis%2C+Krzysztof&rft.date=2021-12-01&rft.issn=0887-3585&rft.eissn=1097-0134&rft.volume=89&rft.issue=12&rft.spage=1607&rft.epage=1617&rft_id=info:doi/10.1002%2Fprot.26237&rft_id=info%3Apmid%2F34533838&rft.externalDocID=PMC8726744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon