Critical assessment of methods of protein structure prediction (CASP)—Round XII
This article reports the outcome of the 12th round of Critical Assessment of Structure Prediction (CASP12), held in 2016. CASP is a community experiment to determine the state of the art in modeling protein structure from amino acid sequence. Participants are provided sequence information and in tur...
Saved in:
| Published in: | Proteins, structure, function, and bioinformatics Vol. 86; no. S1; pp. 7 - 15 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Wiley Subscription Services, Inc
01.03.2018
|
| Subjects: | |
| ISSN: | 0887-3585, 1097-0134, 1097-0134 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This article reports the outcome of the 12th round of Critical Assessment of Structure Prediction (CASP12), held in 2016. CASP is a community experiment to determine the state of the art in modeling protein structure from amino acid sequence. Participants are provided sequence information and in turn provide protein structure models and related information. Analysis of the submitted structures by independent assessors provides a comprehensive picture of the capabilities of current methods, and allows progress to be identified. This was again an exciting round of CASP, with significant advances in 4 areas: (i) The use of new methods for predicting three‐dimensional contacts led to a two‐fold improvement in contact accuracy. (ii) As a consequence, model accuracy for proteins where no template was available improved dramatically. (iii) Models based on a structural template showed overall improvement in accuracy. (iv) Methods for estimating the accuracy of a model continued to improve. CASP continued to develop new areas: (i) Assessing methods for building quaternary structure models, including an expansion of the collaboration between CASP and CAPRI. (ii) Modeling with the aid of experimental data was extended to include SAXS data, as well as again using chemical cross‐linking information. (iii) A team of assessors evaluated the suitability of models for a range of applications, including mutation interpretation, analysis of ligand binding properties, and identification of interfaces. This article describes the experiment and summarizes the results. The rest of this special issue of PROTEINS contains papers describing CASP12 results and assessments in more detail. |
|---|---|
| AbstractList | This article reports the outcome of the 12th round of Critical Assessment of Structure Prediction (CASP12), held in 2016. CASP is a community experiment to determine the state of the art in modeling protein structure from amino acid sequence. Participants are provided sequence information and in turn provide protein structure models and related information. Analysis of the submitted structures by independent assessors provides a comprehensive picture of the capabilities of current methods, and allows progress to be identified. This was again an exciting round of CASP, with significant advances in 4 areas: (i) The use of new methods for predicting three-dimensional contacts led to a two-fold improvement in contact accuracy. (ii) As a consequence, model accuracy for proteins where no template was available improved dramatically. (iii) Models based on a structural template showed overall improvement in accuracy. (iv) Methods for estimating the accuracy of a model continued to improve. CASP continued to develop new areas: (i) Assessing methods for building quaternary structure models, including an expansion of the collaboration between CASP and CAPRI. (ii) Modeling with the aid of experimental data was extended to include SAXS data, as well as again using chemical cross-linking information. (iii) A team of assessors evaluated the suitability of models for a range of applications, including mutation interpretation, analysis of ligand binding properties, and identification of interfaces. This article describes the experiment and summarizes the results. The rest of this special issue of PROTEINS contains papers describing CASP12 results and assessments in more detail.This article reports the outcome of the 12th round of Critical Assessment of Structure Prediction (CASP12), held in 2016. CASP is a community experiment to determine the state of the art in modeling protein structure from amino acid sequence. Participants are provided sequence information and in turn provide protein structure models and related information. Analysis of the submitted structures by independent assessors provides a comprehensive picture of the capabilities of current methods, and allows progress to be identified. This was again an exciting round of CASP, with significant advances in 4 areas: (i) The use of new methods for predicting three-dimensional contacts led to a two-fold improvement in contact accuracy. (ii) As a consequence, model accuracy for proteins where no template was available improved dramatically. (iii) Models based on a structural template showed overall improvement in accuracy. (iv) Methods for estimating the accuracy of a model continued to improve. CASP continued to develop new areas: (i) Assessing methods for building quaternary structure models, including an expansion of the collaboration between CASP and CAPRI. (ii) Modeling with the aid of experimental data was extended to include SAXS data, as well as again using chemical cross-linking information. (iii) A team of assessors evaluated the suitability of models for a range of applications, including mutation interpretation, analysis of ligand binding properties, and identification of interfaces. This article describes the experiment and summarizes the results. The rest of this special issue of PROTEINS contains papers describing CASP12 results and assessments in more detail. This article reports the outcome of the 12th round of Critical Assessment of Structure Prediction (CASP12), held in 2016. CASP is a community experiment to determine the state of the art in modeling protein structure from amino acid sequence. Participants are provided sequence information and in turn provide protein structure models and related information. Analysis of the submitted structures by independent assessors provides a comprehensive picture of the capabilities of current methods, and allows progress to be identified. This was again an exciting round of CASP, with significant advances in 4 areas: (i) The use of new methods for predicting three‐dimensional contacts led to a two‐fold improvement in contact accuracy. (ii) As a consequence, model accuracy for proteins where no template was available improved dramatically. (iii) Models based on a structural template showed overall improvement in accuracy. (iv) Methods for estimating the accuracy of a model continued to improve. CASP continued to develop new areas: (i) Assessing methods for building quaternary structure models, including an expansion of the collaboration between CASP and CAPRI. (ii) Modeling with the aid of experimental data was extended to include SAXS data, as well as again using chemical cross‐linking information. (iii) A team of assessors evaluated the suitability of models for a range of applications, including mutation interpretation, analysis of ligand binding properties, and identification of interfaces. This article describes the experiment and summarizes the results. The rest of this special issue of PROTEINS contains papers describing CASP12 results and assessments in more detail. This article reports the outcome of the 12th round of Critical Assessment of Structure Prediction (CASP12), held in 2016. CASP is a community experiment to determine the state of the art in modeling protein structure from amino acid sequence. Participants are provided sequence information and in turn provide protein structure models and related information. Analysis of the submitted structures by independent assessors provides a comprehensive picture of the capabilities of current methods, and allows progress to be identified. This was again an exciting round of CASP, with significant advances in 4 areas: (i) The use of new methods for predicting three‐dimensional contacts led to a two‐fold improvement in contact accuracy. (ii) As a consequence, model accuracy for proteins where no template was available improved dramatically. (iii) Models based on a structural template showed overall improvement in accuracy. (iv) Methods for estimating the accuracy of a model continued to improve. CASP continued to develop new areas: (i) Assessing methods for building quaternary structure models, including an expansion of the collaboration between CASP and CAPRI. (ii) Modeling with the aid of experimental data was extended to include SAXS data, as well as again using chemical cross‐linking information. (iii) A team of assessors evaluated the suitability of models for a range of applications, including mutation interpretation, analysis of ligand binding properties, and identification of interfaces. This article describes the experiment and summarizes the results. The rest of this special issue of PROTEINS contains papers describing CASP12 results and assessments in more detail. This paper reports the outcome of the 12th round of Critical Assessment of Structure Prediction (CASP12), held in 2016. CASP is a community experiment to determine the state of the art in modeling protein structure from amino acid sequence. Participants are provided sequence information and in turn provide protein structure models and related information. Analysis of the submitted structures by independent assessors provides a comprehensive picture of the capabilities of current methods, and allows progress to be identified. This was again an exciting round of CASP, with significant advances in four areas: (i) The use of new methods for predicting three dimensional contacts led to a two-fold improvement in contact accuracy. (ii) As a consequence, model accuracy for proteins where no template was available improved dramatically. (iii) Models based on a structural template showed overall improvement in accuracy. (iv) Methods for estimating the accuracy of a model continued to improve. CASP continued to develop new areas: (i) Assessing methods for building quaternary structure models, including an expansion of the collaboration between CASP and CAPRI. (ii) Modeling with the aid of experimental data was extended to include SAXS data, as well as again using chemical crosslinking information. (iii) A team of assessors evaluated the suitability of models for a range of applications, including mutation interpretation, analysis of ligand binding properties, and identification of interfaces. This paper describes the experiment and summarizes the results. The rest of this special issue of PROTEINS contains papers describing CASP12 results and assessments in more detail. |
| Author | Schwede, Torsten Tramontano, Anna Kryshtafovych, Andriy Moult, John Fidelis, Krzysztof |
| AuthorAffiliation | University of Basel, Biozentrum & SIB Swiss Institute of Bioinformatics, Basel, Switzerland Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA Institute for Bioscience and Biotechnology Research and Department of Cell Biology and Molecular Genetics, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA Department of Physics and Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy |
| AuthorAffiliation_xml | – name: Institute for Bioscience and Biotechnology Research and Department of Cell Biology and Molecular Genetics, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA – name: Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA – name: University of Basel, Biozentrum & SIB Swiss Institute of Bioinformatics, Basel, Switzerland – name: Department of Physics and Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy |
| Author_xml | – sequence: 1 givenname: John orcidid: 0000-0002-3012-2282 surname: Moult fullname: Moult, John email: jmoult@umd.edu organization: Institute for Bioscience and Biotechnology Research and Department of Cell Biology and Molecular Genetics, University of Maryland, 9600 Gudelsky Drive – sequence: 2 givenname: Krzysztof orcidid: 0000-0002-8061-412X surname: Fidelis fullname: Fidelis, Krzysztof organization: Genome Center, University of California, Davis, 451 Health Sciences Drive – sequence: 3 givenname: Andriy orcidid: 0000-0001-5066-7178 surname: Kryshtafovych fullname: Kryshtafovych, Andriy organization: Genome Center, University of California, Davis, 451 Health Sciences Drive – sequence: 4 givenname: Torsten orcidid: 0000-0003-2715-335X surname: Schwede fullname: Schwede, Torsten organization: University of Basel, Biozentrum & SIB Swiss Institute of Bioinformatics – sequence: 5 givenname: Anna surname: Tramontano fullname: Tramontano, Anna organization: Sapienza University of Rome, P.le Aldo Moro, 5 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29082672$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc9qFTEYxYO02NvqxgeQATdtYWr-ziQboVxqvVBorRXchUzmG5syM7kmGaU7H8In9EnM9LaiRVwlfPmdw8n5dtHW6EdA6AXBRwRj-nodfDqighPxBC0IVnWJCeNbaIGlrEsmpNhBuzHeYIwrxaqnaIcqLGlV0wV6vwwuOWv6wsQIMQ4wpsJ3xQDp2rdxvs724MYipjDZNAXIE2idTc6Pxf7y-MPFwc_vPy79NLbFp9XqGdruTB_h-f25hz6-PblavivPzk9Xy-Oz0grCRQkMN8JIW4lOGMO6RjLKaiobBY1gLTPQWWUUr1VjLVOk49yCbLio8lwxy_bQm43vemoGaG0OHkyv18ENJtxqb5z--2V01_qz_6qFVDXmNBvs3xsE_2WCmPTgooW-NyP4KWqiRF1XUlQio68eoTd-CmP-nqYYCya4YCpTL_9M9DvKQ9sZwBvABh9jgE5bl8zcYw7oek2wnheq58b13UKz5PCR5MH1nzDZwN9cD7f_IfXF5fnVRvMLocmy4g |
| CitedBy_id | crossref_primary_10_1073_pnas_1900778116 crossref_primary_10_1002_prot_25803 crossref_primary_10_1038_s42256_022_00457_9 crossref_primary_10_2478_fcds_2019_0012 crossref_primary_10_1002_prot_25884 crossref_primary_10_1016_j_jmb_2019_11_009 crossref_primary_10_12688_f1000research_20559_1 crossref_primary_10_1186_s13059_019_1738_8 crossref_primary_10_3390_bioengineering8030040 crossref_primary_10_3389_fphar_2025_1498662 crossref_primary_10_1371_journal_pone_0228245 crossref_primary_10_1002_prot_26223 crossref_primary_10_1002_jcc_25847 crossref_primary_10_1002_prot_26186 crossref_primary_10_3390_ijms19113401 crossref_primary_10_1039_D2RA06433B crossref_primary_10_1016_j_str_2019_11_017 crossref_primary_10_1016_j_media_2020_101796 crossref_primary_10_3389_fgene_2022_859626 crossref_primary_10_1002_prot_25774 crossref_primary_10_1002_prot_25775 crossref_primary_10_1016_j_cyto_2019_01_007 crossref_primary_10_1016_j_jmb_2021_167059 crossref_primary_10_1002_prot_25819 crossref_primary_10_1002_prot_25816 crossref_primary_10_1016_j_tig_2024_11_013 crossref_primary_10_1371_journal_pcbi_1009027 crossref_primary_10_1002_prot_26193 crossref_primary_10_2174_0109298673265249231004193520 crossref_primary_10_3390_fermentation5020039 crossref_primary_10_1186_s12859_020_3491_0 crossref_primary_10_1016_j_jsb_2019_10_002 crossref_primary_10_1371_journal_pone_0255076 crossref_primary_10_1002_prot_26079 crossref_primary_10_1186_s12859_019_2932_0 crossref_primary_10_1002_prot_26231 crossref_primary_10_1016_j_tibtech_2020_10_003 crossref_primary_10_1002_wcms_1374 crossref_primary_10_1038_s41587_025_02654_4 crossref_primary_10_1093_nar_gkz1108 crossref_primary_10_1002_med_21575 crossref_primary_10_1002_prot_25823 crossref_primary_10_1016_j_jmb_2024_168494 crossref_primary_10_1016_j_sbi_2018_11_005 crossref_primary_10_3390_biom11111627 crossref_primary_10_2174_1574893614666191017104639 crossref_primary_10_1371_journal_pone_0235153 crossref_primary_10_1371_journal_pone_0243331 crossref_primary_10_1016_j_jmb_2021_167124 crossref_primary_10_1093_bioadv_vbaf117 crossref_primary_10_1093_bib_bbab150 crossref_primary_10_1016_j_jsb_2018_07_003 crossref_primary_10_1371_journal_pone_0254555 crossref_primary_10_1038_s41467_021_27222_7 crossref_primary_10_1002_prot_25795 crossref_primary_10_1016_j_csbj_2020_11_007 crossref_primary_10_1038_s41596_021_00628_9 crossref_primary_10_1038_s41598_020_58868_w crossref_primary_10_1016_j_cels_2019_03_006 crossref_primary_10_1016_j_jsb_2018_07_006 crossref_primary_10_3390_genes9090432 crossref_primary_10_1002_prot_26008 crossref_primary_10_1002_prot_26007 crossref_primary_10_3390_ijms20204974 crossref_primary_10_3390_ijms22116032 crossref_primary_10_1038_s41467_021_25316_w crossref_primary_10_1214_18_STS679 crossref_primary_10_1038_s41598_018_31289_6 crossref_primary_10_1038_s41598_020_74791_6 crossref_primary_10_1093_bib_bbac232 crossref_primary_10_2147_AABC_S294867 crossref_primary_10_1038_s41598_018_32079_w crossref_primary_10_1093_bib_bbac507 crossref_primary_10_1371_journal_pcbi_1008753 crossref_primary_10_1287_ijoc_2022_1188 crossref_primary_10_2196_67351 crossref_primary_10_1109_TSP_2024_3378001 crossref_primary_10_1007_s10822_019_00241_9 crossref_primary_10_3389_fbioe_2023_1051268 crossref_primary_10_1016_j_biochi_2025_08_007 crossref_primary_10_1007_s10930_023_10096_7 crossref_primary_10_1016_j_ymeth_2019_08_008 crossref_primary_10_1002_prot_25845 crossref_primary_10_1016_j_csbj_2021_12_030 crossref_primary_10_1002_prot_25843 crossref_primary_10_1016_j_biochi_2022_11_009 crossref_primary_10_1002_prot_26533 crossref_primary_10_1371_journal_pcbi_1007449 crossref_primary_10_1093_bib_bbab296 crossref_primary_10_3390_biom12070985 crossref_primary_10_1038_s41587_023_01917_2 crossref_primary_10_3390_biom12111665 crossref_primary_10_1109_TNB_2019_2922101 crossref_primary_10_1016_j_jbc_2021_100870 crossref_primary_10_1038_s41557_025_01760_9 crossref_primary_10_1002_pro_3914 crossref_primary_10_1038_s41598_020_61205_w crossref_primary_10_2174_1574893615999200504103643 crossref_primary_10_1002_prot_26267 crossref_primary_10_1016_j_jprot_2020_103777 crossref_primary_10_3390_ijms20153774 crossref_primary_10_1002_prot_25452 crossref_primary_10_12677_HJCB_2023_131001 crossref_primary_10_1007_s13721_021_00311_9 crossref_primary_10_1038_s42256_024_00931_6 crossref_primary_10_1038_s41598_019_55047_4 crossref_primary_10_3390_ijms18122623 crossref_primary_10_1038_s41598_020_72906_7 crossref_primary_10_1016_j_compbiolchem_2020_107301 crossref_primary_10_1002_advs_202001314 crossref_primary_10_1038_s42256_021_00366_3 crossref_primary_10_1109_TCBB_2019_2921958 crossref_primary_10_1016_j_crmeth_2021_100014 crossref_primary_10_1016_j_fsi_2021_05_007 crossref_primary_10_1080_22221751_2018_1561158 crossref_primary_10_3390_ijms20102442 crossref_primary_10_3390_molecules23010216 crossref_primary_10_3390_molecules25122749 crossref_primary_10_3390_info9010020 crossref_primary_10_1038_s42256_025_01011_z crossref_primary_10_1073_pnas_2016239118 crossref_primary_10_1016_j_compbiomed_2022_105695 crossref_primary_10_1002_prot_26037 crossref_primary_10_1016_j_dib_2018_08_214 crossref_primary_10_1109_ACCESS_2022_3219490 crossref_primary_10_1016_j_csbj_2022_11_057 crossref_primary_10_1016_j_str_2018_10_001 crossref_primary_10_1016_j_compbiomed_2019_04_040 crossref_primary_10_1371_journal_pone_0221347 crossref_primary_10_1186_s12859_021_04258_6 crossref_primary_10_1016_j_jmgm_2019_07_013 crossref_primary_10_1002_prot_25865 crossref_primary_10_3390_computation6020039 crossref_primary_10_1093_bib_bbac169 crossref_primary_10_1016_j_compbiolchem_2022_107773 crossref_primary_10_1186_s12900_019_0103_1 crossref_primary_10_1109_TEVC_2019_2938531 crossref_primary_10_1186_s12859_022_05031_z crossref_primary_10_1002_jcc_26876 crossref_primary_10_1097_MD_0000000000019668 crossref_primary_10_1371_journal_pone_0229230 crossref_primary_10_3390_ijms26136246 crossref_primary_10_1016_j_future_2019_04_011 crossref_primary_10_1038_s42256_019_0086_4 crossref_primary_10_1155_2020_7584968 crossref_primary_10_3390_molecules25061375 crossref_primary_10_12688_f1000research_14870_1 crossref_primary_10_1002_prot_25870 crossref_primary_10_1073_pnas_1908241116 crossref_primary_10_1107_S2059798322011858 crossref_primary_10_1109_TCBB_2019_2911677 crossref_primary_10_1002_prot_25879 crossref_primary_10_1016_j_jmb_2018_05_041 crossref_primary_10_3390_biom10050767 crossref_primary_10_1038_s42256_019_0130_4 crossref_primary_10_1016_j_ins_2020_06_003 crossref_primary_10_1371_journal_pcbi_1007219 crossref_primary_10_1177_1177932220952739 crossref_primary_10_1007_s10930_020_09880_6 crossref_primary_10_1016_j_sbi_2019_03_012 crossref_primary_10_1093_nar_gkz403 crossref_primary_10_1089_cmb_2019_0193 crossref_primary_10_1515_psr_2019_0098 crossref_primary_10_3748_wjg_v29_i2_310 crossref_primary_10_1093_nar_gkz367 crossref_primary_10_1002_imo2_45 crossref_primary_10_3390_bioengineering9030118 crossref_primary_10_3892_ijmm_2019_4373 crossref_primary_10_1016_j_str_2022_05_001 crossref_primary_10_1109_TEVC_2024_3365814 crossref_primary_10_3390_biom14030339 crossref_primary_10_1016_j_swevo_2020_100677 |
| Cites_doi | 10.1002/prot.22534 10.1126/science.1065659 10.1093/nar/gkw1132 10.1371/journal.pcbi.1004494 10.1002/prot.25408 10.1002/prot.25423 10.1371/journal.pcbi.1002326 10.1038/nature04670 10.1002/humu.21656 10.1002/prot.22538 10.1002/prot.25409 10.1038/nsmb.3410 10.1002/prot.24997 10.1016/j.str.2007.12.001 10.1002/prot.24973 10.1146/annurev.biophys.30.1.173 10.1002/prot.23182 10.1002/prot.25048 10.1002/prot.23177 10.1002/prot.25403 10.1002/prot.22499 10.1038/nrg3414 10.1002/prot.24347 10.1016/j.str.2015.05.013 10.1002/prot.25005 10.1093/nar/gkt1115 10.1002/prot.23180 10.1038/nmeth.1818 10.1002/prot.25007 10.1002/prot.25028 10.1002/prot.21669 10.1002/prot.24919 10.1002/prot.25151 10.1002/prot.24448 |
| ContentType | Journal Article |
| Copyright | 2017 Wiley Periodicals, Inc. 2018 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2017 Wiley Periodicals, Inc. – notice: 2018 Wiley Periodicals, Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
| DOI | 10.1002/prot.25415 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| EISSN | 1097-0134 |
| EndPage | 15 |
| ExternalDocumentID | PMC5897042 29082672 10_1002_prot_25415 PROT25415 |
| Genre | article Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: US National Institute of General Medical Sciences funderid: R01 GM100482 – fundername: NIGMS NIH HHS grantid: R01 GM100482 |
| GroupedDBID | -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FA8 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c5145-e30b5a8c65f5aa3fb8323728b9eb53d3aefc9a9479bcc391f44ce8b456fc993c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 235 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425523000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0887-3585 1097-0134 |
| IngestDate | Tue Nov 04 02:00:51 EST 2025 Fri Jul 11 09:43:30 EDT 2025 Sat Nov 29 15:01:21 EST 2025 Mon Jul 21 06:00:56 EDT 2025 Sat Nov 29 01:48:06 EST 2025 Tue Nov 18 22:26:59 EST 2025 Wed Jan 22 16:49:01 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | S1 |
| Keywords | CASP protein structure prediction community wide experiment |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5145-e30b5a8c65f5aa3fb8323728b9eb53d3aefc9a9479bcc391f44ce8b456fc993c3 |
| Notes | Funding information US National Institute of General Medical Sciences, Grant Number: R01 GM100482 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3012-2282 0000-0001-5066-7178 0000-0002-8061-412X 0000-0003-2715-335X |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5897042 |
| PMID | 29082672 |
| PQID | 2005354539 |
| PQPubID | 1016441 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5897042 proquest_miscellaneous_1957768565 proquest_journals_2005354539 pubmed_primary_29082672 crossref_citationtrail_10_1002_prot_25415 crossref_primary_10_1002_prot_25415 wiley_primary_10_1002_prot_25415_PROT25415 |
| PublicationCentury | 2000 |
| PublicationDate | March 2018 |
| PublicationDateYYYYMMDD | 2018-03-01 |
| PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hokoben |
| PublicationTitle | Proteins, structure, function, and bioinformatics |
| PublicationTitleAlternate | Proteins |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2009; 77 2015; 23 2001; 294 2013; 14 2011; 79(suppl10) 2017; 24 2015; 11 2008; 16 2017; 45 2006; 440 2016; 84 2017 2011; 79 2014; 82 2018; 86 2014; 82(Suppl2) 2012; 33 2001; 30 2007; 69 2011; 7 2011; 9 2014; 42 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_45_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_43_1 Thornton JM (e_1_2_5_8_1) 2017; 24 Abriata LA (e_1_2_5_14_1) 2018; 86 Lensink MF (e_1_2_5_38_1) 2017 Liu T (e_1_2_5_42_1) 2017 Schaarschmidt J (e_1_2_5_11_1) 2017 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 Ogorzalek TL (e_1_2_5_24_1) 2017 Hovan L (e_1_2_5_29_1) 2018; 86 Kryshtafovych A (e_1_2_5_22_1) 2017 Kryshtafovych Albrecht R (e_1_2_5_3_1) 2017 e_1_2_5_15_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_34_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_13_1 e_1_2_5_32_1 Moult J (e_1_2_5_7_1) 2017 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 Kryshtafovych A (e_1_2_5_16_1) 2017 Abriata LA (e_1_2_5_5_1) 2018; 86 Lafita A (e_1_2_5_37_1) 2018; 86 e_1_2_5_30_1 e_1_2_5_31_1 Haas J (e_1_2_5_6_1) 2017 |
| References_xml | – volume: 42 start-page: D358 issue: Database issue year: 2014 end-page: D363 article-title: The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases publication-title: Nucleic Acids Res. – volume: 86 start-page: 000 year: 2018 end-page: 000 article-title: Assessment of protein assembly prediction in CASP12 publication-title: Proteins. – volume: 45 start-page: D313 issue: D1 year: 2017 end-page: D319 article-title: The SWISS‐MODEL repository‐new features and functionality publication-title: Nucleic Acids Res. – year: 2017 article-title: Target highlights from the first post‐PSICASP experiment (CASP12, May‐August 2016) publication-title: Proteins. – year: 2017 article-title: The challenge of modeling protein assemblies: The CASP12‐CAPRI experiment publication-title: Proteins. – year: 2017 article-title: Evaluation of template‐based modeling in CASP12 publication-title: Proteins. – volume: 79 start-page: 196 issue: S10 year: 2011 end-page: 207 article-title: CASP9 results compared to those of previous CASP experiments publication-title: Proteins. – volume: 79(suppl10) start-page: 91 year: 2011 end-page: 106 article-title: Evaluation of model quality predictions in CASP9 publication-title: Proteins. – year: 2017 article-title: Small angle X‐ray scattering and cross‐linking for data assisted protein structure prediction in CASP 12 with prospects for improved accuracy publication-title: Proteins. – volume: 33 start-page: 359 issue: 2 year: 2012 end-page: 363 article-title: Protein‐protein interaction sites are hot spots for disease‐associated nonsynonymous SNPs publication-title: Hum Mutat. – volume: 84 start-page: 370 year: 2016 end-page: 391 article-title: Biological function derived from predicted structures in CASP11 publication-title: Proteins. – volume: 84 start-page: 260 issue: Suppl 1 year: 2016 end-page: 281 article-title: Assessment of refinement of template‐based models in CASP11 publication-title: Proteins. – volume: 84 start-page: 349 year: 2016 end-page: 369 article-title: Methods of model accuracy estimation can help selecting the best models from decoy sets: Assessment of model accuracy estimations in CASP11 publication-title: Proteins. – volume: 82 start-page: 164 year: 2014 end-page: 174 article-title: CASP10 results compared to those of previous CASP experiments publication-title: Proteins. – volume: 14 start-page: 249 issue: 4 year: 2013 end-page: 261 article-title: Emerging methods in protein co‐evolution publication-title: Nat Rev Genet. – volume: 23 start-page: 1156 issue: 7 year: 2015 end-page: 1167 article-title: Outcome of the first wwPDB hybrid/integrative methods task force workshop publication-title: Structure. – volume: 440 start-page: 637 issue: 7084 year: 2006 end-page: 643 article-title: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae publication-title: Nature. – volume: 7 start-page: e1002326 issue: 12 year: 2011 article-title: Using multiple microenvironments to find similar ligand‐binding sites: Application to kinase inhibitor binding publication-title: PLoS Comput Biol. – volume: 84 start-page: 51 year: 2016 end-page: 66 article-title: Evaluation of free modeling targets in CASP11 and ROLL publication-title: Proteins. – volume: 69 start-page: 175 issue: S8 year: 2007 end-page: 183 article-title: Assessment of predictions in the model quality assessment category publication-title: Proteins. – volume: 82(Suppl2) start-page: 112 year: 2014 end-page: 126 article-title: Assessment of the assessment: Evaluation of the model quality estimates in CASP10 publication-title: Proteins. – volume: 84 start-page: 4 year: 2016 end-page: 14 article-title: Critical assessment of methods of protein structure prediction: Progress and new directions in round XI publication-title: Proteins. – volume: 9 start-page: 173 issue: 2 year: 2011 end-page: 175 article-title: HHblits: Lightning‐fast iterative protein sequence searching by HMM‐HMM alignment publication-title: Nat Methods. – volume: 77 start-page: 66 issue: S9 year: 2009 end-page: 80 article-title: Assessment of the protein‐structure refinement category in CASP8 publication-title: Proteins. – volume: 86 start-page: 000 year: 2018 end-page: 000 article-title: Assessment of the model refinement category in CASP12 publication-title: Proteins. – volume: 84 start-page: 152 year: 2016 end-page: 163 article-title: Blind testing of cross‐linking/mass spectrometry hybrid methods in CASP11 publication-title: Proteins. – volume: 16 start-page: 14 issue: 1 year: 2008 end-page: 16 article-title: Comparative modeling in structural genomics publication-title: Structure. – volume: 77 start-page: 128 issue: S9 year: 2009 end-page: 132 article-title: Fast and accurate automatic structure prediction with HHpred publication-title: Proteins. – year: 2017 article-title: A tribute to Anna Tramontano publication-title: Proteins. – year: 2017 article-title: Biological and functional relevance of CASP predictions publication-title: Proteins. – volume: 86 start-page: 000 year: 2018 end-page: 000 article-title: Definition and classification of evaluation units for tertiary structure prediction in CASP12 facilitated through semi‐automated metrics publication-title: Proteins – volume: 11 start-page: e1004494 issue: 10 year: 2015 article-title: Predicting the effect of mutations on protein‐protein binding interactions through structure‐based interface profiles publication-title: PLoS Comput Biol. – volume: 84 start-page: 323 issue: Suppl 1 year: 2016 end-page: 348 article-title: Prediction of homoprotein and heteroprotein complexes by protein docking and template‐based modeling: A CASP‐CAPRI experiment publication-title: Proteins. – year: 2017 article-title: Assessment of contact predictions in CASP12: Co‐evolution and deep learning coming of age publication-title: Proteins. – volume: 294 start-page: 93 issue: 5540 year: 2001 end-page: 96 article-title: Protein structure prediction and structural genomics publication-title: Science. – year: 2017 – volume: 79 start-page: 37 issue: Suppl 10 year: 2011 end-page: 58 article-title: Assessment of template based protein structure predictions in CASP9 publication-title: Proteins. – volume: 86 start-page: 000 year: 2018 end-page: 000 article-title: Assessment of hard target modeling in CASP12 reveals an emerging role of alignment‐based contact prediction methods publication-title: Proteins. – volume: 30 start-page: 173 issue: 1 year: 2001 end-page: 189 article-title: Ab initio protein structure prediction: Progress and prospects publication-title: Annu Rev Biophys Biomol Struct. – volume: 84 start-page: 15 issue: suppl 1 year: 2016 end-page: 19 article-title: CASP11 statistics and the prediction center evaluation system publication-title: Proteins. – year: 2017 article-title: Assessment of model accuracy estimations in CASP12 publication-title: Proteins. – year: 2017 article-title: Continuous automated model evaluation (CAMEO) complementing the critical assessment of techniques for structure prediction publication-title: Proteins. – volume: 77 start-page: 157 issue: S9 year: 2009 end-page: 166 article-title: Evaluation of CASP8 model quality predictions publication-title: Proteins. – volume: 24 start-page: 431 issue: 5 year: 2017 end-page: 432 article-title: Anna Tramontano 1957–2017 publication-title: Nat Struct Mol Biol. – ident: e_1_2_5_18_1 doi: 10.1002/prot.22534 – ident: e_1_2_5_39_1 doi: 10.1126/science.1065659 – year: 2017 ident: e_1_2_5_11_1 article-title: Assessment of contact predictions in CASP12: Co‐evolution and deep learning coming of age publication-title: Proteins. – ident: e_1_2_5_45_1 doi: 10.1093/nar/gkw1132 – ident: e_1_2_5_33_1 doi: 10.1371/journal.pcbi.1004494 – volume: 86 start-page: 000 year: 2018 ident: e_1_2_5_37_1 article-title: Assessment of protein assembly prediction in CASP12 publication-title: Proteins. doi: 10.1002/prot.25408 – volume: 86 start-page: 000 year: 2018 ident: e_1_2_5_14_1 article-title: Assessment of hard target modeling in CASP12 reveals an emerging role of alignment‐based contact prediction methods publication-title: Proteins. doi: 10.1002/prot.25423 – year: 2017 ident: e_1_2_5_6_1 article-title: Continuous automated model evaluation (CAMEO) complementing the critical assessment of techniques for structure prediction publication-title: Proteins. – ident: e_1_2_5_43_1 doi: 10.1371/journal.pcbi.1002326 – ident: e_1_2_5_30_1 doi: 10.1038/nature04670 – ident: e_1_2_5_32_1 doi: 10.1002/humu.21656 – ident: e_1_2_5_26_1 – ident: e_1_2_5_27_1 doi: 10.1002/prot.22538 – volume: 86 start-page: 000 year: 2018 ident: e_1_2_5_29_1 article-title: Assessment of the model refinement category in CASP12 publication-title: Proteins. doi: 10.1002/prot.25409 – volume: 24 start-page: 431 issue: 5 year: 2017 ident: e_1_2_5_8_1 article-title: Anna Tramontano 1957–2017 publication-title: Nat Struct Mol Biol. doi: 10.1038/nsmb.3410 – ident: e_1_2_5_41_1 doi: 10.1002/prot.24997 – ident: e_1_2_5_40_1 doi: 10.1016/j.str.2007.12.001 – year: 2017 ident: e_1_2_5_38_1 article-title: The challenge of modeling protein assemblies: The CASP12‐CAPRI experiment publication-title: Proteins. – ident: e_1_2_5_10_1 doi: 10.1002/prot.24973 – ident: e_1_2_5_12_1 doi: 10.1146/annurev.biophys.30.1.173 – ident: e_1_2_5_15_1 doi: 10.1002/prot.23182 – year: 2017 ident: e_1_2_5_24_1 article-title: Small angle X‐ray scattering and cross‐linking for data assisted protein structure prediction in CASP 12 with prospects for improved accuracy publication-title: Proteins. – ident: e_1_2_5_28_1 doi: 10.1002/prot.25048 – ident: e_1_2_5_34_1 doi: 10.1002/prot.23177 – volume: 86 start-page: 000 year: 2018 ident: e_1_2_5_5_1 article-title: Definition and classification of evaluation units for tertiary structure prediction in CASP12 facilitated through semi‐automated metrics publication-title: Proteins doi: 10.1002/prot.25403 – ident: e_1_2_5_44_1 doi: 10.1002/prot.22499 – year: 2017 ident: e_1_2_5_7_1 article-title: A tribute to Anna Tramontano publication-title: Proteins. – year: 2017 ident: e_1_2_5_22_1 article-title: Assessment of model accuracy estimations in CASP12 publication-title: Proteins. – year: 2017 ident: e_1_2_5_3_1 article-title: Target highlights from the first post‐PSICASP experiment (CASP12, May‐August 2016) publication-title: Proteins. – ident: e_1_2_5_9_1 doi: 10.1038/nrg3414 – ident: e_1_2_5_20_1 doi: 10.1002/prot.24347 – ident: e_1_2_5_23_1 doi: 10.1016/j.str.2015.05.013 – ident: e_1_2_5_2_1 doi: 10.1002/prot.25005 – ident: e_1_2_5_31_1 doi: 10.1093/nar/gkt1115 – year: 2017 ident: e_1_2_5_16_1 article-title: Evaluation of template‐based modeling in CASP12 publication-title: Proteins. – ident: e_1_2_5_19_1 doi: 10.1002/prot.23180 – ident: e_1_2_5_13_1 doi: 10.1038/nmeth.1818 – ident: e_1_2_5_36_1 doi: 10.1002/prot.25007 – ident: e_1_2_5_25_1 doi: 10.1002/prot.25028 – ident: e_1_2_5_17_1 doi: 10.1002/prot.21669 – ident: e_1_2_5_21_1 doi: 10.1002/prot.24919 – ident: e_1_2_5_35_1 doi: 10.1002/prot.25151 – ident: e_1_2_5_4_1 doi: 10.1002/prot.24448 – year: 2017 ident: e_1_2_5_42_1 article-title: Biological and functional relevance of CASP predictions publication-title: Proteins. |
| SSID | ssj0006936 |
| Score | 2.6516829 |
| Snippet | This article reports the outcome of the 12th round of Critical Assessment of Structure Prediction (CASP12), held in 2016. CASP is a community experiment to... This paper reports the outcome of the 12th round of Critical Assessment of Structure Prediction (CASP12), held in 2016. CASP is a community experiment to... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7 |
| SubjectTerms | Accuracy Amino acid sequence Amino acids CASP community wide experiment Computational Biology - methods Construction methods Humans Identification methods Interfaces Mathematical models Model accuracy Modelling Models, Molecular Models, Statistical Predictions Protein Conformation Protein structure protein structure prediction Proteins Proteins - chemistry Quaternary structure X-Ray Diffraction |
| Title | Critical assessment of methods of protein structure prediction (CASP)—Round XII |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.25415 https://www.ncbi.nlm.nih.gov/pubmed/29082672 https://www.proquest.com/docview/2005354539 https://www.proquest.com/docview/1957768565 https://pubmed.ncbi.nlm.nih.gov/PMC5897042 |
| Volume | 86 |
| WOSCitedRecordID | wos000425523000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0134 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006936 issn: 0887-3585 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dTxQxFL3BRaMvgoAyiqRGY4RkgZlOp23iy7K4kYTgukKyb5O224mb6CxhhIQ3f4S_0F_ibTszuMGYEN6atpP56L2357adcwDesFQbwYTuyoxhgsItxkGdacxSYkNFYnFO8pT5R_z4WIzHcrgA75t_YQI_RLvg5jzDx2vn4EpXu9ekoY7HYAfTG_eH-WKChpt2YPFgNDg9aiNxJr1EYHAkxMUtPWmye331_IR0A2XePCz5N4j1s9Bg6W7PvwyPa_RJesFcnsCCLVdgtVdi5v39irwl_jyoX2hfgQf7Telhv1GFW4XPjTYCUS2nJ5kVJChRV67oqR-mJQnUtBfnFmvcdpAzAfKu3_sy3Pr989fI6TmR8eHhGpwOPpz0P3ZrWYauQXTFupbuaaaEyVjBlKKFxqBAeSK0tJrRCVW2MFLJlEttDJVxkabGCo1IDeslNfQpdMpZadeBFPFEKEZTIzAt86srai9WLKNGJSqdsAi2mrHJTc1Z7qQzvuWBbTnJ3Svl_itG8LrtexaYOv7Za6MZ4rz21spJcTKKUJLKCF61zfhh3eaJKu3sospjyTimZoh_I3gWLKK9TeJ04zOeRMDnbKXt4Di851vK6VfP5c2E5Bg3I9j2tvKfJ8-Ho08nvvT8Np1fwCPEeCIcm9uADg69fQn3zeWPaXW-Cff4WGzWfvMH8rYcqA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFL2ayhB72QewLRtjRkwIJnWQOE7sx65QUVFKKUXqW2S7jlZpSyc6Ju1tP2K_cL9k13YSqJiQpr1ZjqN8-N7rc2-ccwDesVhpzrhqioRhgpIajIMqUZilhJryyOCa5Cjze2m_z8djMSj35th_YTw_RF1ws57h4rV1cFuQ3r9hDbVEBh8wv7G_mC_FaEesAUuHw85lrw7FiXAagd6TEBjX_KTR_s3ZiyvSHZh5d7fkbRTrlqHOk_98gKfwuMSfpOUN5hk8MMUqrLUKzL2__CA7xO0IdaX2VVj-WLVW2pUu3BqcV-oIRNasnmSWE69FPbdNR_4wLYgnp72-MthjPwhZIyC77dbFYO_3z19Dq-hExt3uOlx2jkbt42YpzNDUiK9Y09ADxSTXCcuZlDRXGBZoGnEljGJ0QqXJtZAiToXSmoowj2NtuEKshv2CavocGsWsMC-B5OGES0ZjzTExc_UVeRBKllAtIxlPWAB71eRkumQtt-IZnzPPtxxl9pEy9xYD2K7HfvVcHX8dtVHNcVb669yKcTKKYJKKALbqw_hi7ecTWZjZ9TwLBUsxOUMEHMALbxL1ZSKrHJ-kUQDpgrHUAyyL9-KRYvrJsXkzLlKMnAG8d8Zyz51ng-HZyLVe_cvgt7ByPDrtZb1u_-Q1PELEx_0mug1ooBmYN_BQf_82nV9tlu7zBzOlH7A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5CG7cXGLtAYBuehtA2qWyJ48R-LB0V1aquK5vUt8h2HVFpS6uWIfHGj-AX8ks4tpOMatMkxJvlOMrF5xx_xzn5PoB3LFaaM64aImGYoKQG46BKFGYpoaY8MrgmOcr8btrr8eFQ9MvaHPsvjOeHqDfcrGe4eG0d3ExH-eENa6glMviA-Y39xXw5ZiJBv1w-HrQvunUoToTTCPSehMC45ieNDm_OXlyRbsHM29WSf6NYtwy1n__nA6zAsxJ_kqY3mBfwwBSrsNYsMPe--kHeE1cR6rbaV-HRx6r1pFXpwq3BWaWOQGTN6kkmOfFa1HPbdOQP44J4ctrrmcEe-0HIGgHZazW_9Pd___w1sIpOZNjprMNF-9N563OjFGZoaMRXrGHokWKS64TlTEqaKwwLNI24EkYxOqLS5FpIEadCaU1FmMexNlwhVsN-QTXdgKViUphXQPJwxCWjseaYmLn9FXkUSpZQLSMZj1gA-9XkZLpkLbfiGZeZ51uOMvtImXuLAezWY6eeq-POUZvVHGelv86tGCejCCapCGCnPowv1n4-kYWZXM-zULAUkzNEwAG89CZRXyayyvFJGgWQLhhLPcCyeC8eKcZfHZs34yLFyBnAgTOWe-486w9Oz13r9b8MfguP-8ftrNvpnbyBpwj4uK-h24QltAKzBQ_192_j-Wy79J4_kp4fKw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+assessment+of+methods+of+protein+structure+prediction+%28CASP%29-Round+XII&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Moult%2C+John&rft.au=Fidelis%2C+Krzysztof&rft.au=Kryshtafovych%2C+Andriy&rft.au=Schwede%2C+Torsten&rft.date=2018-03-01&rft.eissn=1097-0134&rft.volume=86+Suppl+1&rft.spage=7&rft_id=info:doi/10.1002%2Fprot.25415&rft_id=info%3Apmid%2F29082672&rft.externalDocID=29082672 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon |