Critical assessment of methods of protein structure prediction (CASP)—Round XII

This article reports the outcome of the 12th round of Critical Assessment of Structure Prediction (CASP12), held in 2016. CASP is a community experiment to determine the state of the art in modeling protein structure from amino acid sequence. Participants are provided sequence information and in tur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proteins, structure, function, and bioinformatics Ročník 86; číslo S1; s. 7 - 15
Hlavní autoři: Moult, John, Fidelis, Krzysztof, Kryshtafovych, Andriy, Schwede, Torsten, Tramontano, Anna
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Wiley Subscription Services, Inc 01.03.2018
Témata:
ISSN:0887-3585, 1097-0134, 1097-0134
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This article reports the outcome of the 12th round of Critical Assessment of Structure Prediction (CASP12), held in 2016. CASP is a community experiment to determine the state of the art in modeling protein structure from amino acid sequence. Participants are provided sequence information and in turn provide protein structure models and related information. Analysis of the submitted structures by independent assessors provides a comprehensive picture of the capabilities of current methods, and allows progress to be identified. This was again an exciting round of CASP, with significant advances in 4 areas: (i) The use of new methods for predicting three‐dimensional contacts led to a two‐fold improvement in contact accuracy. (ii) As a consequence, model accuracy for proteins where no template was available improved dramatically. (iii) Models based on a structural template showed overall improvement in accuracy. (iv) Methods for estimating the accuracy of a model continued to improve. CASP continued to develop new areas: (i) Assessing methods for building quaternary structure models, including an expansion of the collaboration between CASP and CAPRI. (ii) Modeling with the aid of experimental data was extended to include SAXS data, as well as again using chemical cross‐linking information. (iii) A team of assessors evaluated the suitability of models for a range of applications, including mutation interpretation, analysis of ligand binding properties, and identification of interfaces. This article describes the experiment and summarizes the results. The rest of this special issue of PROTEINS contains papers describing CASP12 results and assessments in more detail.
AbstractList This article reports the outcome of the 12th round of Critical Assessment of Structure Prediction (CASP12), held in 2016. CASP is a community experiment to determine the state of the art in modeling protein structure from amino acid sequence. Participants are provided sequence information and in turn provide protein structure models and related information. Analysis of the submitted structures by independent assessors provides a comprehensive picture of the capabilities of current methods, and allows progress to be identified. This was again an exciting round of CASP, with significant advances in 4 areas: (i) The use of new methods for predicting three‐dimensional contacts led to a two‐fold improvement in contact accuracy. (ii) As a consequence, model accuracy for proteins where no template was available improved dramatically. (iii) Models based on a structural template showed overall improvement in accuracy. (iv) Methods for estimating the accuracy of a model continued to improve. CASP continued to develop new areas: (i) Assessing methods for building quaternary structure models, including an expansion of the collaboration between CASP and CAPRI. (ii) Modeling with the aid of experimental data was extended to include SAXS data, as well as again using chemical cross‐linking information. (iii) A team of assessors evaluated the suitability of models for a range of applications, including mutation interpretation, analysis of ligand binding properties, and identification of interfaces. This article describes the experiment and summarizes the results. The rest of this special issue of PROTEINS contains papers describing CASP12 results and assessments in more detail.
This article reports the outcome of the 12th round of Critical Assessment of Structure Prediction (CASP12), held in 2016. CASP is a community experiment to determine the state of the art in modeling protein structure from amino acid sequence. Participants are provided sequence information and in turn provide protein structure models and related information. Analysis of the submitted structures by independent assessors provides a comprehensive picture of the capabilities of current methods, and allows progress to be identified. This was again an exciting round of CASP, with significant advances in 4 areas: (i) The use of new methods for predicting three-dimensional contacts led to a two-fold improvement in contact accuracy. (ii) As a consequence, model accuracy for proteins where no template was available improved dramatically. (iii) Models based on a structural template showed overall improvement in accuracy. (iv) Methods for estimating the accuracy of a model continued to improve. CASP continued to develop new areas: (i) Assessing methods for building quaternary structure models, including an expansion of the collaboration between CASP and CAPRI. (ii) Modeling with the aid of experimental data was extended to include SAXS data, as well as again using chemical cross-linking information. (iii) A team of assessors evaluated the suitability of models for a range of applications, including mutation interpretation, analysis of ligand binding properties, and identification of interfaces. This article describes the experiment and summarizes the results. The rest of this special issue of PROTEINS contains papers describing CASP12 results and assessments in more detail.This article reports the outcome of the 12th round of Critical Assessment of Structure Prediction (CASP12), held in 2016. CASP is a community experiment to determine the state of the art in modeling protein structure from amino acid sequence. Participants are provided sequence information and in turn provide protein structure models and related information. Analysis of the submitted structures by independent assessors provides a comprehensive picture of the capabilities of current methods, and allows progress to be identified. This was again an exciting round of CASP, with significant advances in 4 areas: (i) The use of new methods for predicting three-dimensional contacts led to a two-fold improvement in contact accuracy. (ii) As a consequence, model accuracy for proteins where no template was available improved dramatically. (iii) Models based on a structural template showed overall improvement in accuracy. (iv) Methods for estimating the accuracy of a model continued to improve. CASP continued to develop new areas: (i) Assessing methods for building quaternary structure models, including an expansion of the collaboration between CASP and CAPRI. (ii) Modeling with the aid of experimental data was extended to include SAXS data, as well as again using chemical cross-linking information. (iii) A team of assessors evaluated the suitability of models for a range of applications, including mutation interpretation, analysis of ligand binding properties, and identification of interfaces. This article describes the experiment and summarizes the results. The rest of this special issue of PROTEINS contains papers describing CASP12 results and assessments in more detail.
This article reports the outcome of the 12th round of Critical Assessment of Structure Prediction (CASP12), held in 2016. CASP is a community experiment to determine the state of the art in modeling protein structure from amino acid sequence. Participants are provided sequence information and in turn provide protein structure models and related information. Analysis of the submitted structures by independent assessors provides a comprehensive picture of the capabilities of current methods, and allows progress to be identified. This was again an exciting round of CASP, with significant advances in 4 areas: (i) The use of new methods for predicting three‐dimensional contacts led to a two‐fold improvement in contact accuracy. (ii) As a consequence, model accuracy for proteins where no template was available improved dramatically. (iii) Models based on a structural template showed overall improvement in accuracy. (iv) Methods for estimating the accuracy of a model continued to improve. CASP continued to develop new areas: (i) Assessing methods for building quaternary structure models, including an expansion of the collaboration between CASP and CAPRI. (ii) Modeling with the aid of experimental data was extended to include SAXS data, as well as again using chemical cross‐linking information. (iii) A team of assessors evaluated the suitability of models for a range of applications, including mutation interpretation, analysis of ligand binding properties, and identification of interfaces. This article describes the experiment and summarizes the results. The rest of this special issue of PROTEINS contains papers describing CASP12 results and assessments in more detail.
This paper reports the outcome of the 12th round of Critical Assessment of Structure Prediction (CASP12), held in 2016. CASP is a community experiment to determine the state of the art in modeling protein structure from amino acid sequence. Participants are provided sequence information and in turn provide protein structure models and related information. Analysis of the submitted structures by independent assessors provides a comprehensive picture of the capabilities of current methods, and allows progress to be identified. This was again an exciting round of CASP, with significant advances in four areas: (i) The use of new methods for predicting three dimensional contacts led to a two-fold improvement in contact accuracy. (ii) As a consequence, model accuracy for proteins where no template was available improved dramatically. (iii) Models based on a structural template showed overall improvement in accuracy. (iv) Methods for estimating the accuracy of a model continued to improve. CASP continued to develop new areas: (i) Assessing methods for building quaternary structure models, including an expansion of the collaboration between CASP and CAPRI. (ii) Modeling with the aid of experimental data was extended to include SAXS data, as well as again using chemical crosslinking information. (iii) A team of assessors evaluated the suitability of models for a range of applications, including mutation interpretation, analysis of ligand binding properties, and identification of interfaces. This paper describes the experiment and summarizes the results. The rest of this special issue of PROTEINS contains papers describing CASP12 results and assessments in more detail.
Author Schwede, Torsten
Tramontano, Anna
Kryshtafovych, Andriy
Moult, John
Fidelis, Krzysztof
AuthorAffiliation University of Basel, Biozentrum & SIB Swiss Institute of Bioinformatics, Basel, Switzerland
Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
Institute for Bioscience and Biotechnology Research and Department of Cell Biology and Molecular Genetics, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA
Department of Physics and Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy
AuthorAffiliation_xml – name: Institute for Bioscience and Biotechnology Research and Department of Cell Biology and Molecular Genetics, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA
– name: Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
– name: University of Basel, Biozentrum & SIB Swiss Institute of Bioinformatics, Basel, Switzerland
– name: Department of Physics and Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy
Author_xml – sequence: 1
  givenname: John
  orcidid: 0000-0002-3012-2282
  surname: Moult
  fullname: Moult, John
  email: jmoult@umd.edu
  organization: Institute for Bioscience and Biotechnology Research and Department of Cell Biology and Molecular Genetics, University of Maryland, 9600 Gudelsky Drive
– sequence: 2
  givenname: Krzysztof
  orcidid: 0000-0002-8061-412X
  surname: Fidelis
  fullname: Fidelis, Krzysztof
  organization: Genome Center, University of California, Davis, 451 Health Sciences Drive
– sequence: 3
  givenname: Andriy
  orcidid: 0000-0001-5066-7178
  surname: Kryshtafovych
  fullname: Kryshtafovych, Andriy
  organization: Genome Center, University of California, Davis, 451 Health Sciences Drive
– sequence: 4
  givenname: Torsten
  orcidid: 0000-0003-2715-335X
  surname: Schwede
  fullname: Schwede, Torsten
  organization: University of Basel, Biozentrum & SIB Swiss Institute of Bioinformatics
– sequence: 5
  givenname: Anna
  surname: Tramontano
  fullname: Tramontano, Anna
  organization: Sapienza University of Rome, P.le Aldo Moro, 5
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29082672$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9qFTEYxYO02NvqxgeQATdtYWr-ziQboVxqvVBorRXchUzmG5syM7kmGaU7H8In9EnM9LaiRVwlfPmdw8n5dtHW6EdA6AXBRwRj-nodfDqighPxBC0IVnWJCeNbaIGlrEsmpNhBuzHeYIwrxaqnaIcqLGlV0wV6vwwuOWv6wsQIMQ4wpsJ3xQDp2rdxvs724MYipjDZNAXIE2idTc6Pxf7y-MPFwc_vPy79NLbFp9XqGdruTB_h-f25hz6-PblavivPzk9Xy-Oz0grCRQkMN8JIW4lOGMO6RjLKaiobBY1gLTPQWWUUr1VjLVOk49yCbLio8lwxy_bQm43vemoGaG0OHkyv18ENJtxqb5z--2V01_qz_6qFVDXmNBvs3xsE_2WCmPTgooW-NyP4KWqiRF1XUlQio68eoTd-CmP-nqYYCya4YCpTL_9M9DvKQ9sZwBvABh9jgE5bl8zcYw7oek2wnheq58b13UKz5PCR5MH1nzDZwN9cD7f_IfXF5fnVRvMLocmy4g
CitedBy_id crossref_primary_10_1073_pnas_1900778116
crossref_primary_10_1002_prot_25803
crossref_primary_10_1038_s42256_022_00457_9
crossref_primary_10_2478_fcds_2019_0012
crossref_primary_10_1002_prot_25884
crossref_primary_10_1016_j_jmb_2019_11_009
crossref_primary_10_12688_f1000research_20559_1
crossref_primary_10_1186_s13059_019_1738_8
crossref_primary_10_3390_bioengineering8030040
crossref_primary_10_3389_fphar_2025_1498662
crossref_primary_10_1371_journal_pone_0228245
crossref_primary_10_1002_prot_26223
crossref_primary_10_1002_jcc_25847
crossref_primary_10_1002_prot_26186
crossref_primary_10_3390_ijms19113401
crossref_primary_10_1039_D2RA06433B
crossref_primary_10_1016_j_str_2019_11_017
crossref_primary_10_1016_j_media_2020_101796
crossref_primary_10_3389_fgene_2022_859626
crossref_primary_10_1002_prot_25774
crossref_primary_10_1002_prot_25775
crossref_primary_10_1016_j_cyto_2019_01_007
crossref_primary_10_1016_j_jmb_2021_167059
crossref_primary_10_1002_prot_25819
crossref_primary_10_1002_prot_25816
crossref_primary_10_1016_j_tig_2024_11_013
crossref_primary_10_1371_journal_pcbi_1009027
crossref_primary_10_1002_prot_26193
crossref_primary_10_2174_0109298673265249231004193520
crossref_primary_10_3390_fermentation5020039
crossref_primary_10_1186_s12859_020_3491_0
crossref_primary_10_1016_j_jsb_2019_10_002
crossref_primary_10_1371_journal_pone_0255076
crossref_primary_10_1002_prot_26079
crossref_primary_10_1186_s12859_019_2932_0
crossref_primary_10_1002_prot_26231
crossref_primary_10_1016_j_tibtech_2020_10_003
crossref_primary_10_1002_wcms_1374
crossref_primary_10_1038_s41587_025_02654_4
crossref_primary_10_1093_nar_gkz1108
crossref_primary_10_1002_med_21575
crossref_primary_10_1002_prot_25823
crossref_primary_10_1016_j_jmb_2024_168494
crossref_primary_10_1016_j_sbi_2018_11_005
crossref_primary_10_3390_biom11111627
crossref_primary_10_2174_1574893614666191017104639
crossref_primary_10_1371_journal_pone_0235153
crossref_primary_10_1371_journal_pone_0243331
crossref_primary_10_1016_j_jmb_2021_167124
crossref_primary_10_1093_bioadv_vbaf117
crossref_primary_10_1093_bib_bbab150
crossref_primary_10_1016_j_jsb_2018_07_003
crossref_primary_10_1371_journal_pone_0254555
crossref_primary_10_1038_s41467_021_27222_7
crossref_primary_10_1002_prot_25795
crossref_primary_10_1016_j_csbj_2020_11_007
crossref_primary_10_1038_s41596_021_00628_9
crossref_primary_10_1038_s41598_020_58868_w
crossref_primary_10_1016_j_cels_2019_03_006
crossref_primary_10_1016_j_jsb_2018_07_006
crossref_primary_10_3390_genes9090432
crossref_primary_10_1002_prot_26008
crossref_primary_10_1002_prot_26007
crossref_primary_10_3390_ijms20204974
crossref_primary_10_3390_ijms22116032
crossref_primary_10_1038_s41467_021_25316_w
crossref_primary_10_1214_18_STS679
crossref_primary_10_1038_s41598_018_31289_6
crossref_primary_10_1038_s41598_020_74791_6
crossref_primary_10_1093_bib_bbac232
crossref_primary_10_2147_AABC_S294867
crossref_primary_10_1038_s41598_018_32079_w
crossref_primary_10_1093_bib_bbac507
crossref_primary_10_1371_journal_pcbi_1008753
crossref_primary_10_1287_ijoc_2022_1188
crossref_primary_10_2196_67351
crossref_primary_10_1109_TSP_2024_3378001
crossref_primary_10_1007_s10822_019_00241_9
crossref_primary_10_3389_fbioe_2023_1051268
crossref_primary_10_1016_j_biochi_2025_08_007
crossref_primary_10_1007_s10930_023_10096_7
crossref_primary_10_1016_j_ymeth_2019_08_008
crossref_primary_10_1002_prot_25845
crossref_primary_10_1016_j_csbj_2021_12_030
crossref_primary_10_1002_prot_25843
crossref_primary_10_1016_j_biochi_2022_11_009
crossref_primary_10_1002_prot_26533
crossref_primary_10_1371_journal_pcbi_1007449
crossref_primary_10_1093_bib_bbab296
crossref_primary_10_3390_biom12070985
crossref_primary_10_1038_s41587_023_01917_2
crossref_primary_10_3390_biom12111665
crossref_primary_10_1109_TNB_2019_2922101
crossref_primary_10_1016_j_jbc_2021_100870
crossref_primary_10_1038_s41557_025_01760_9
crossref_primary_10_1002_pro_3914
crossref_primary_10_1038_s41598_020_61205_w
crossref_primary_10_2174_1574893615999200504103643
crossref_primary_10_1002_prot_26267
crossref_primary_10_1016_j_jprot_2020_103777
crossref_primary_10_3390_ijms20153774
crossref_primary_10_1002_prot_25452
crossref_primary_10_12677_HJCB_2023_131001
crossref_primary_10_1007_s13721_021_00311_9
crossref_primary_10_1038_s42256_024_00931_6
crossref_primary_10_1038_s41598_019_55047_4
crossref_primary_10_3390_ijms18122623
crossref_primary_10_1038_s41598_020_72906_7
crossref_primary_10_1016_j_compbiolchem_2020_107301
crossref_primary_10_1002_advs_202001314
crossref_primary_10_1038_s42256_021_00366_3
crossref_primary_10_1109_TCBB_2019_2921958
crossref_primary_10_1016_j_crmeth_2021_100014
crossref_primary_10_1016_j_fsi_2021_05_007
crossref_primary_10_1080_22221751_2018_1561158
crossref_primary_10_3390_ijms20102442
crossref_primary_10_3390_molecules23010216
crossref_primary_10_3390_molecules25122749
crossref_primary_10_3390_info9010020
crossref_primary_10_1038_s42256_025_01011_z
crossref_primary_10_1073_pnas_2016239118
crossref_primary_10_1016_j_compbiomed_2022_105695
crossref_primary_10_1002_prot_26037
crossref_primary_10_1016_j_dib_2018_08_214
crossref_primary_10_1109_ACCESS_2022_3219490
crossref_primary_10_1016_j_csbj_2022_11_057
crossref_primary_10_1016_j_str_2018_10_001
crossref_primary_10_1016_j_compbiomed_2019_04_040
crossref_primary_10_1371_journal_pone_0221347
crossref_primary_10_1186_s12859_021_04258_6
crossref_primary_10_1016_j_jmgm_2019_07_013
crossref_primary_10_1002_prot_25865
crossref_primary_10_3390_computation6020039
crossref_primary_10_1093_bib_bbac169
crossref_primary_10_1016_j_compbiolchem_2022_107773
crossref_primary_10_1186_s12900_019_0103_1
crossref_primary_10_1109_TEVC_2019_2938531
crossref_primary_10_1186_s12859_022_05031_z
crossref_primary_10_1002_jcc_26876
crossref_primary_10_1097_MD_0000000000019668
crossref_primary_10_1371_journal_pone_0229230
crossref_primary_10_3390_ijms26136246
crossref_primary_10_1016_j_future_2019_04_011
crossref_primary_10_1038_s42256_019_0086_4
crossref_primary_10_1155_2020_7584968
crossref_primary_10_3390_molecules25061375
crossref_primary_10_12688_f1000research_14870_1
crossref_primary_10_1002_prot_25870
crossref_primary_10_1073_pnas_1908241116
crossref_primary_10_1107_S2059798322011858
crossref_primary_10_1109_TCBB_2019_2911677
crossref_primary_10_1002_prot_25879
crossref_primary_10_1016_j_jmb_2018_05_041
crossref_primary_10_3390_biom10050767
crossref_primary_10_1038_s42256_019_0130_4
crossref_primary_10_1016_j_ins_2020_06_003
crossref_primary_10_1371_journal_pcbi_1007219
crossref_primary_10_1177_1177932220952739
crossref_primary_10_1007_s10930_020_09880_6
crossref_primary_10_1016_j_sbi_2019_03_012
crossref_primary_10_1093_nar_gkz403
crossref_primary_10_1089_cmb_2019_0193
crossref_primary_10_1515_psr_2019_0098
crossref_primary_10_3748_wjg_v29_i2_310
crossref_primary_10_1093_nar_gkz367
crossref_primary_10_1002_imo2_45
crossref_primary_10_3390_bioengineering9030118
crossref_primary_10_3892_ijmm_2019_4373
crossref_primary_10_1016_j_str_2022_05_001
crossref_primary_10_1109_TEVC_2024_3365814
crossref_primary_10_3390_biom14030339
crossref_primary_10_1016_j_swevo_2020_100677
Cites_doi 10.1002/prot.22534
10.1126/science.1065659
10.1093/nar/gkw1132
10.1371/journal.pcbi.1004494
10.1002/prot.25408
10.1002/prot.25423
10.1371/journal.pcbi.1002326
10.1038/nature04670
10.1002/humu.21656
10.1002/prot.22538
10.1002/prot.25409
10.1038/nsmb.3410
10.1002/prot.24997
10.1016/j.str.2007.12.001
10.1002/prot.24973
10.1146/annurev.biophys.30.1.173
10.1002/prot.23182
10.1002/prot.25048
10.1002/prot.23177
10.1002/prot.25403
10.1002/prot.22499
10.1038/nrg3414
10.1002/prot.24347
10.1016/j.str.2015.05.013
10.1002/prot.25005
10.1093/nar/gkt1115
10.1002/prot.23180
10.1038/nmeth.1818
10.1002/prot.25007
10.1002/prot.25028
10.1002/prot.21669
10.1002/prot.24919
10.1002/prot.25151
10.1002/prot.24448
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
– notice: 2018 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.1002/prot.25415
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Virology and AIDS Abstracts
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1097-0134
EndPage 15
ExternalDocumentID PMC5897042
29082672
10_1002_prot_25415
PROT25415
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: US National Institute of General Medical Sciences
  funderid: R01 GM100482
– fundername: NIGMS NIH HHS
  grantid: R01 GM100482
GroupedDBID -~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5145-e30b5a8c65f5aa3fb8323728b9eb53d3aefc9a9479bcc391f44ce8b456fc993c3
IEDL.DBID DRFUL
ISICitedReferencesCount 235
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425523000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0887-3585
1097-0134
IngestDate Tue Nov 04 02:00:51 EST 2025
Fri Jul 11 09:43:30 EDT 2025
Sat Nov 29 15:01:21 EST 2025
Mon Jul 21 06:00:56 EDT 2025
Sat Nov 29 01:48:06 EST 2025
Tue Nov 18 22:26:59 EST 2025
Wed Jan 22 16:49:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue S1
Keywords CASP
protein structure prediction
community wide experiment
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5145-e30b5a8c65f5aa3fb8323728b9eb53d3aefc9a9479bcc391f44ce8b456fc993c3
Notes Funding information
US National Institute of General Medical Sciences, Grant Number: R01 GM100482
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3012-2282
0000-0001-5066-7178
0000-0002-8061-412X
0000-0003-2715-335X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5897042
PMID 29082672
PQID 2005354539
PQPubID 1016441
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5897042
proquest_miscellaneous_1957768565
proquest_journals_2005354539
pubmed_primary_29082672
crossref_citationtrail_10_1002_prot_25415
crossref_primary_10_1002_prot_25415
wiley_primary_10_1002_prot_25415_PROT25415
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hokoben
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 77
2015; 23
2001; 294
2013; 14
2011; 79(suppl10)
2017; 24
2015; 11
2008; 16
2017; 45
2006; 440
2016; 84
2017
2011; 79
2014; 82
2018; 86
2014; 82(Suppl2)
2012; 33
2001; 30
2007; 69
2011; 7
2011; 9
2014; 42
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_45_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_43_1
Thornton JM (e_1_2_5_8_1) 2017; 24
Abriata LA (e_1_2_5_14_1) 2018; 86
Lensink MF (e_1_2_5_38_1) 2017
Liu T (e_1_2_5_42_1) 2017
Schaarschmidt J (e_1_2_5_11_1) 2017
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
Ogorzalek TL (e_1_2_5_24_1) 2017
Hovan L (e_1_2_5_29_1) 2018; 86
Kryshtafovych A (e_1_2_5_22_1) 2017
Kryshtafovych Albrecht R (e_1_2_5_3_1) 2017
e_1_2_5_15_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_34_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_13_1
e_1_2_5_32_1
Moult J (e_1_2_5_7_1) 2017
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Kryshtafovych A (e_1_2_5_16_1) 2017
Abriata LA (e_1_2_5_5_1) 2018; 86
Lafita A (e_1_2_5_37_1) 2018; 86
e_1_2_5_30_1
e_1_2_5_31_1
Haas J (e_1_2_5_6_1) 2017
References_xml – volume: 42
  start-page: D358
  issue: Database issue
  year: 2014
  end-page: D363
  article-title: The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases
  publication-title: Nucleic Acids Res.
– volume: 86
  start-page: 000
  year: 2018
  end-page: 000
  article-title: Assessment of protein assembly prediction in CASP12
  publication-title: Proteins.
– volume: 45
  start-page: D313
  issue: D1
  year: 2017
  end-page: D319
  article-title: The SWISS‐MODEL repository‐new features and functionality
  publication-title: Nucleic Acids Res.
– year: 2017
  article-title: Target highlights from the first post‐PSICASP experiment (CASP12, May‐August 2016)
  publication-title: Proteins.
– year: 2017
  article-title: The challenge of modeling protein assemblies: The CASP12‐CAPRI experiment
  publication-title: Proteins.
– year: 2017
  article-title: Evaluation of template‐based modeling in CASP12
  publication-title: Proteins.
– volume: 79
  start-page: 196
  issue: S10
  year: 2011
  end-page: 207
  article-title: CASP9 results compared to those of previous CASP experiments
  publication-title: Proteins.
– volume: 79(suppl10)
  start-page: 91
  year: 2011
  end-page: 106
  article-title: Evaluation of model quality predictions in CASP9
  publication-title: Proteins.
– year: 2017
  article-title: Small angle X‐ray scattering and cross‐linking for data assisted protein structure prediction in CASP 12 with prospects for improved accuracy
  publication-title: Proteins.
– volume: 33
  start-page: 359
  issue: 2
  year: 2012
  end-page: 363
  article-title: Protein‐protein interaction sites are hot spots for disease‐associated nonsynonymous SNPs
  publication-title: Hum Mutat.
– volume: 84
  start-page: 370
  year: 2016
  end-page: 391
  article-title: Biological function derived from predicted structures in CASP11
  publication-title: Proteins.
– volume: 84
  start-page: 260
  issue: Suppl 1
  year: 2016
  end-page: 281
  article-title: Assessment of refinement of template‐based models in CASP11
  publication-title: Proteins.
– volume: 84
  start-page: 349
  year: 2016
  end-page: 369
  article-title: Methods of model accuracy estimation can help selecting the best models from decoy sets: Assessment of model accuracy estimations in CASP11
  publication-title: Proteins.
– volume: 82
  start-page: 164
  year: 2014
  end-page: 174
  article-title: CASP10 results compared to those of previous CASP experiments
  publication-title: Proteins.
– volume: 14
  start-page: 249
  issue: 4
  year: 2013
  end-page: 261
  article-title: Emerging methods in protein co‐evolution
  publication-title: Nat Rev Genet.
– volume: 23
  start-page: 1156
  issue: 7
  year: 2015
  end-page: 1167
  article-title: Outcome of the first wwPDB hybrid/integrative methods task force workshop
  publication-title: Structure.
– volume: 440
  start-page: 637
  issue: 7084
  year: 2006
  end-page: 643
  article-title: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae
  publication-title: Nature.
– volume: 7
  start-page: e1002326
  issue: 12
  year: 2011
  article-title: Using multiple microenvironments to find similar ligand‐binding sites: Application to kinase inhibitor binding
  publication-title: PLoS Comput Biol.
– volume: 84
  start-page: 51
  year: 2016
  end-page: 66
  article-title: Evaluation of free modeling targets in CASP11 and ROLL
  publication-title: Proteins.
– volume: 69
  start-page: 175
  issue: S8
  year: 2007
  end-page: 183
  article-title: Assessment of predictions in the model quality assessment category
  publication-title: Proteins.
– volume: 82(Suppl2)
  start-page: 112
  year: 2014
  end-page: 126
  article-title: Assessment of the assessment: Evaluation of the model quality estimates in CASP10
  publication-title: Proteins.
– volume: 84
  start-page: 4
  year: 2016
  end-page: 14
  article-title: Critical assessment of methods of protein structure prediction: Progress and new directions in round XI
  publication-title: Proteins.
– volume: 9
  start-page: 173
  issue: 2
  year: 2011
  end-page: 175
  article-title: HHblits: Lightning‐fast iterative protein sequence searching by HMM‐HMM alignment
  publication-title: Nat Methods.
– volume: 77
  start-page: 66
  issue: S9
  year: 2009
  end-page: 80
  article-title: Assessment of the protein‐structure refinement category in CASP8
  publication-title: Proteins.
– volume: 86
  start-page: 000
  year: 2018
  end-page: 000
  article-title: Assessment of the model refinement category in CASP12
  publication-title: Proteins.
– volume: 84
  start-page: 152
  year: 2016
  end-page: 163
  article-title: Blind testing of cross‐linking/mass spectrometry hybrid methods in CASP11
  publication-title: Proteins.
– volume: 16
  start-page: 14
  issue: 1
  year: 2008
  end-page: 16
  article-title: Comparative modeling in structural genomics
  publication-title: Structure.
– volume: 77
  start-page: 128
  issue: S9
  year: 2009
  end-page: 132
  article-title: Fast and accurate automatic structure prediction with HHpred
  publication-title: Proteins.
– year: 2017
  article-title: A tribute to Anna Tramontano
  publication-title: Proteins.
– year: 2017
  article-title: Biological and functional relevance of CASP predictions
  publication-title: Proteins.
– volume: 86
  start-page: 000
  year: 2018
  end-page: 000
  article-title: Definition and classification of evaluation units for tertiary structure prediction in CASP12 facilitated through semi‐automated metrics
  publication-title: Proteins
– volume: 11
  start-page: e1004494
  issue: 10
  year: 2015
  article-title: Predicting the effect of mutations on protein‐protein binding interactions through structure‐based interface profiles
  publication-title: PLoS Comput Biol.
– volume: 84
  start-page: 323
  issue: Suppl 1
  year: 2016
  end-page: 348
  article-title: Prediction of homoprotein and heteroprotein complexes by protein docking and template‐based modeling: A CASP‐CAPRI experiment
  publication-title: Proteins.
– year: 2017
  article-title: Assessment of contact predictions in CASP12: Co‐evolution and deep learning coming of age
  publication-title: Proteins.
– volume: 294
  start-page: 93
  issue: 5540
  year: 2001
  end-page: 96
  article-title: Protein structure prediction and structural genomics
  publication-title: Science.
– year: 2017
– volume: 79
  start-page: 37
  issue: Suppl 10
  year: 2011
  end-page: 58
  article-title: Assessment of template based protein structure predictions in CASP9
  publication-title: Proteins.
– volume: 86
  start-page: 000
  year: 2018
  end-page: 000
  article-title: Assessment of hard target modeling in CASP12 reveals an emerging role of alignment‐based contact prediction methods
  publication-title: Proteins.
– volume: 30
  start-page: 173
  issue: 1
  year: 2001
  end-page: 189
  article-title: Ab initio protein structure prediction: Progress and prospects
  publication-title: Annu Rev Biophys Biomol Struct.
– volume: 84
  start-page: 15
  issue: suppl 1
  year: 2016
  end-page: 19
  article-title: CASP11 statistics and the prediction center evaluation system
  publication-title: Proteins.
– year: 2017
  article-title: Assessment of model accuracy estimations in CASP12
  publication-title: Proteins.
– year: 2017
  article-title: Continuous automated model evaluation (CAMEO) complementing the critical assessment of techniques for structure prediction
  publication-title: Proteins.
– volume: 77
  start-page: 157
  issue: S9
  year: 2009
  end-page: 166
  article-title: Evaluation of CASP8 model quality predictions
  publication-title: Proteins.
– volume: 24
  start-page: 431
  issue: 5
  year: 2017
  end-page: 432
  article-title: Anna Tramontano 1957–2017
  publication-title: Nat Struct Mol Biol.
– ident: e_1_2_5_18_1
  doi: 10.1002/prot.22534
– ident: e_1_2_5_39_1
  doi: 10.1126/science.1065659
– year: 2017
  ident: e_1_2_5_11_1
  article-title: Assessment of contact predictions in CASP12: Co‐evolution and deep learning coming of age
  publication-title: Proteins.
– ident: e_1_2_5_45_1
  doi: 10.1093/nar/gkw1132
– ident: e_1_2_5_33_1
  doi: 10.1371/journal.pcbi.1004494
– volume: 86
  start-page: 000
  year: 2018
  ident: e_1_2_5_37_1
  article-title: Assessment of protein assembly prediction in CASP12
  publication-title: Proteins.
  doi: 10.1002/prot.25408
– volume: 86
  start-page: 000
  year: 2018
  ident: e_1_2_5_14_1
  article-title: Assessment of hard target modeling in CASP12 reveals an emerging role of alignment‐based contact prediction methods
  publication-title: Proteins.
  doi: 10.1002/prot.25423
– year: 2017
  ident: e_1_2_5_6_1
  article-title: Continuous automated model evaluation (CAMEO) complementing the critical assessment of techniques for structure prediction
  publication-title: Proteins.
– ident: e_1_2_5_43_1
  doi: 10.1371/journal.pcbi.1002326
– ident: e_1_2_5_30_1
  doi: 10.1038/nature04670
– ident: e_1_2_5_32_1
  doi: 10.1002/humu.21656
– ident: e_1_2_5_26_1
– ident: e_1_2_5_27_1
  doi: 10.1002/prot.22538
– volume: 86
  start-page: 000
  year: 2018
  ident: e_1_2_5_29_1
  article-title: Assessment of the model refinement category in CASP12
  publication-title: Proteins.
  doi: 10.1002/prot.25409
– volume: 24
  start-page: 431
  issue: 5
  year: 2017
  ident: e_1_2_5_8_1
  article-title: Anna Tramontano 1957–2017
  publication-title: Nat Struct Mol Biol.
  doi: 10.1038/nsmb.3410
– ident: e_1_2_5_41_1
  doi: 10.1002/prot.24997
– ident: e_1_2_5_40_1
  doi: 10.1016/j.str.2007.12.001
– year: 2017
  ident: e_1_2_5_38_1
  article-title: The challenge of modeling protein assemblies: The CASP12‐CAPRI experiment
  publication-title: Proteins.
– ident: e_1_2_5_10_1
  doi: 10.1002/prot.24973
– ident: e_1_2_5_12_1
  doi: 10.1146/annurev.biophys.30.1.173
– ident: e_1_2_5_15_1
  doi: 10.1002/prot.23182
– year: 2017
  ident: e_1_2_5_24_1
  article-title: Small angle X‐ray scattering and cross‐linking for data assisted protein structure prediction in CASP 12 with prospects for improved accuracy
  publication-title: Proteins.
– ident: e_1_2_5_28_1
  doi: 10.1002/prot.25048
– ident: e_1_2_5_34_1
  doi: 10.1002/prot.23177
– volume: 86
  start-page: 000
  year: 2018
  ident: e_1_2_5_5_1
  article-title: Definition and classification of evaluation units for tertiary structure prediction in CASP12 facilitated through semi‐automated metrics
  publication-title: Proteins
  doi: 10.1002/prot.25403
– ident: e_1_2_5_44_1
  doi: 10.1002/prot.22499
– year: 2017
  ident: e_1_2_5_7_1
  article-title: A tribute to Anna Tramontano
  publication-title: Proteins.
– year: 2017
  ident: e_1_2_5_22_1
  article-title: Assessment of model accuracy estimations in CASP12
  publication-title: Proteins.
– year: 2017
  ident: e_1_2_5_3_1
  article-title: Target highlights from the first post‐PSICASP experiment (CASP12, May‐August 2016)
  publication-title: Proteins.
– ident: e_1_2_5_9_1
  doi: 10.1038/nrg3414
– ident: e_1_2_5_20_1
  doi: 10.1002/prot.24347
– ident: e_1_2_5_23_1
  doi: 10.1016/j.str.2015.05.013
– ident: e_1_2_5_2_1
  doi: 10.1002/prot.25005
– ident: e_1_2_5_31_1
  doi: 10.1093/nar/gkt1115
– year: 2017
  ident: e_1_2_5_16_1
  article-title: Evaluation of template‐based modeling in CASP12
  publication-title: Proteins.
– ident: e_1_2_5_19_1
  doi: 10.1002/prot.23180
– ident: e_1_2_5_13_1
  doi: 10.1038/nmeth.1818
– ident: e_1_2_5_36_1
  doi: 10.1002/prot.25007
– ident: e_1_2_5_25_1
  doi: 10.1002/prot.25028
– ident: e_1_2_5_17_1
  doi: 10.1002/prot.21669
– ident: e_1_2_5_21_1
  doi: 10.1002/prot.24919
– ident: e_1_2_5_35_1
  doi: 10.1002/prot.25151
– ident: e_1_2_5_4_1
  doi: 10.1002/prot.24448
– year: 2017
  ident: e_1_2_5_42_1
  article-title: Biological and functional relevance of CASP predictions
  publication-title: Proteins.
SSID ssj0006936
Score 2.6517308
Snippet This article reports the outcome of the 12th round of Critical Assessment of Structure Prediction (CASP12), held in 2016. CASP is a community experiment to...
This paper reports the outcome of the 12th round of Critical Assessment of Structure Prediction (CASP12), held in 2016. CASP is a community experiment to...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7
SubjectTerms Accuracy
Amino acid sequence
Amino acids
CASP
community wide experiment
Computational Biology - methods
Construction methods
Humans
Identification methods
Interfaces
Mathematical models
Model accuracy
Modelling
Models, Molecular
Models, Statistical
Predictions
Protein Conformation
Protein structure
protein structure prediction
Proteins
Proteins - chemistry
Quaternary structure
X-Ray Diffraction
Title Critical assessment of methods of protein structure prediction (CASP)—Round XII
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.25415
https://www.ncbi.nlm.nih.gov/pubmed/29082672
https://www.proquest.com/docview/2005354539
https://www.proquest.com/docview/1957768565
https://pubmed.ncbi.nlm.nih.gov/PMC5897042
Volume 86
WOSCitedRecordID wos000425523000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0134
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006936
  issn: 0887-3585
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD7UrVJfvLRWR2uJKGKFaTu5bCbgy7q6WJC6ri3s25BkM3RBZ6XTFnzzR_gL_SWeJDNTl4ogvoXkDDOTnJN8uX0fwDOuDI4EJksNozLlkqtUU6FTTrmmGiE2dTqITcjDw3w6VeMVeNXehYn8EN2Cm4-M0F_7ANem3rskDfU8Brs4vfE3zFcpOi7vweqbyej4fdcT91WQCIyBhLi4oyele5dPLw9IV1Dm1cOSv4PYMAqNbv_f99-BWw36JIPoLndhxVXrsDGocOb95Rt5TsJ50LDQvg43XreptWGrCrcBH1ttBKI7Tk-yKElUoq59MlA_zCsSqWnPTx3m-O0g7wLkxXDwabzz8_uPiddzItODg3twPHp7NHyXNrIMqUV0JVLH9o3Que2LUmjNSoOdApM0N8oZwWZMu9IqrbhUxlqmspJz63KDSA3zFbNsE3rVonIPgPAZk5mTqu_UPmeWo5HISipnzu8PlzaBnbZtCttwlnvpjM9FZFumhf-lItRiAk8726-RqeOPVlttExdNtNZeilMwhJJMJfCkK8aK9ZsnunKL87rIlJA4NUP8m8D96BHda6jXje9LmoBc8pXOwHN4L5dU85PA5S1yJbHfTOBl8JW_fHkxnnw4CqmH_2L8CG4ixsvjsbkt6GHTu8dw3V6czevTbbgmp_l2Eze_AG8YHOc
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5CHWi8cNm4BAYYgRBDClt8qePHUqhWUUopndS3yHYdUQlStDIk3vgR_EJ-Ccd2klENISHeLOdEie1z7M-37wN4zJXBkcBkqWFUplxylWoqdMop11QjxKZOB7EJOR7n87ma1Gdz_F2YyA_RLrj5yAj9tQ9wvyB9cMYa6okMnuP8xl8x3-LoR6IDWy-ng-NR2xV3VdAIjJGEwLjlJ6UHZ29vjkjnYOb505K_o9gwDA2u_mcBrsGVGn-SXnSY63DBVTuw26tw7v3pG3lCwonQsNS-A5deNKntfqMLtwvvGnUEoltWT7IqSdSiXvtkIH9YViSS056eOMzxG0LeCcjTfu_9ZP_n9x9Tr-hE5sPhDTgevJr1j9JamCG1iK9E6tihETq3XVEKrVlpsFtgkuZGOSPYgmlXWqUVl8pYy1RWcm5dbhCrYb5ilt2ETrWq3G0gfMFk5qTqOnXImeVoJLKSyoXzO8SlTWC_aZzC1qzlXjzjYxH5lmnhi1SEWkzgUWv7OXJ1_NFqr2njoo7XtRfjFAzBJFMJPGwfY8X67RNdudXpusiUkDg5QwScwK3oEu1nqFeO70qagNxwltbAs3hvPqmWHwKbt8iVxJ4zgWfBWf7y58Vk-nYWUnf-xfgBbB_N3oyK0XD8-i5cRsSXx0N0e9BBN3D34KL9-mW5Prlfh88vsZgf7w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5CGzBeuGxcAgOMQIghZVt8iePH0lFRMZVSNqlvke06ohKk08qQeONH8Av5JRzbSUY1hIR4s5wTJbbPsT_fvg_gGVcGRwKTpYZRmXLJVaqp0CmnXFONEJs6HcQm5GhUTKdq3JzN8XdhIj9Et-DmIyP01z7A3cms2jtnDfVEBrs4v_FXzNe5UDnG5frBZHB82HXFuQoagTGSEBh3_KR07_zt1RHpAsy8eFrydxQbhqHBjf8swE243uBP0osOcwsuuXoTtno1zr0_fyPPSTgRGpbaN-HKqza10W914bbgfauOQHTH6kkWFYla1EufDOQP85pEctqzU4c5fkPIOwF50e99GO_8_P5j4hWdyHQ4vA3Hg9dH_TdpI8yQWsRXInVs3whd2FxUQmtWGewWmKSFUc4INmPaVVZpxaUy1jKVVZxbVxjEapivmGV3YK1e1O4eED5jMnNS5U7tc2Y5GomsonLm_A5xZRPYaRuntA1ruRfP-FRGvmVa-iKVoRYTeNrZnkSujj9abbdtXDbxuvRinIIhmGQqgSfdY6xYv32ia7c4W5aZEhInZ4iAE7gbXaL7DPXK8bmkCcgVZ-kMPIv36pN6_jGweYtCSew5E3gZnOUvf16OJ--OQur-vxg_hqvjg0F5OBy9fQDXEPAV8QzdNqyhF7iHcNl-_TJfnj5qoucXEGEfag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+assessment+of+methods+of+protein+structure+prediction+%28CASP%29%E2%80%94Round+XII&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Moult%2C+John&rft.au=Fidelis%2C+Krzysztof&rft.au=Kryshtafovych%2C+Andriy&rft.au=Schwede%2C+Torsten&rft.date=2018-03-01&rft.issn=0887-3585&rft.eissn=1097-0134&rft.volume=86&rft.issue=S1&rft.spage=7&rft.epage=15&rft_id=info:doi/10.1002%2Fprot.25415&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_prot_25415
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon