Generalized Fuzzy c -Means Clustering and its Property of Fuzzy Classification Function

This study shows that a generalized fuzzy c -means (gFCM) clustering algorithm, which covers both standard and exponential fuzzy c -means clustering, can be constructed if a given fuzzified function, its derivative, and its inverse derivative can be calculated. Furthermore, our results show that the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of advanced computational intelligence and intelligent informatics Ročník 25; číslo 1; s. 73 - 82
Hlavní autoři: Kanzawa, Yuchi, Miyamoto, Sadaaki
Médium: Journal Article
Jazyk:angličtina
Vydáno: Tokyo Fuji Technology Press Co. Ltd 20.01.2021
Témata:
ISSN:1343-0130, 1883-8014
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This study shows that a generalized fuzzy c -means (gFCM) clustering algorithm, which covers both standard and exponential fuzzy c -means clustering, can be constructed if a given fuzzified function, its derivative, and its inverse derivative can be calculated. Furthermore, our results show that the fuzzy classification function for gFCM exhibits a behavior similar to that of both standard and exponential fuzzy c -means clustering.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1343-0130
1883-8014
DOI:10.20965/jaciii.2021.p0073