Minimum leaf conductance during drought: unravelling its variability and impact on plant survival

Summary Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology‐based models of drought‐induced plant mortality. We measured water loss of detached leaves c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The New phytologist Ročník 246; číslo 3; s. 1001 - 1014
Hlavní autori: Burlett, Régis, Trueba, Santiago, Bouteiller, Xavier Paul, Forget, Guillaume, Torres‐Ruiz, José M., Martin‐StPaul, Nicolas K., Parise, Camille, Cochard, Hervé, Delzon, Sylvain
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Wiley Subscription Services, Inc 01.05.2025
Wiley
John Wiley and Sons Inc
Predmet:
ISSN:0028-646X, 1469-8137, 1469-8137
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Summary Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology‐based models of drought‐induced plant mortality. We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance (gmin) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different gmin estimations on the time to hydraulic failure (THF). Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of gmin had a significant impact on the THF predicted by the model, especially for drought‐resistant species. We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct gmin values of water loss. We describe an accurate, repeatable and open‐source methodology to estimate gmin. Such methodology could enhance models of plant mortality under drought. Résumé L’étude de la perte d’eau des feuilles après la fermeture des stomates est essentielle pour comprendre les effets d’une sécheresse prolongée sur la végétation. Il est donc important de quantifier précisément ces pertes pour améliorer les modèles de mortalité des plantes induite par la sécheresse. Nous avons mesuré en continu la perte d’eau de feuilles détachées pendant la déshydratation chez neuf espèces d’angiospermes et calculé la conductance foliaire minimale (gmin) à différents seuils de potentiel hydrique correspondants aux seuils de pertes de fonctions physiologiques, allant du point de perte de turgescence à la défaillance hydraulique. Un modèle mécaniste a évalué l’impact des différentes estimations de gmin sur le temps de défaillance hydraulique (THF). La conductance résiduelle n’est pas stable et diminue continuellement à des rythmes variés d’une espèce à l’autre pendant toute la durée du processus de déshydratation, même après correction du rétrécissement des feuille. La prise en compte des variations de l’estimations de gmin a un impact significatif sur le THF prédit par le modèle, en particulier pour les espèces résistantes à la sécheresse. Nous démontrons que la conductance résiduelle est variable au cours de la déshydratation, et qu’il est donc important de préciser pour quelles limites physiologiques ou état hydrique l’estimation de gmin a été effectué. Nous décrivons une méthodologie précise, reproductible et open‐source pour cette estimation. Une telle méthodologie pourrait améliorer les modèles de mortalité des plantes lors de sécheresse.
AbstractList Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology-based models of drought-induced plant mortality. We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance (g ) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different g estimations on the time to hydraulic failure (THF). Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of g had a significant impact on the THF predicted by the model, especially for drought-resistant species. We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct g values of water loss. We describe an accurate, repeatable and open-source methodology to estimate g . Such methodology could enhance models of plant mortality under drought.
Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology‐based models of drought‐induced plant mortality. We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance ( g min ) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different g min estimations on the time to hydraulic failure (THF). Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of g min had a significant impact on the THF predicted by the model, especially for drought‐resistant species. We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct g min values of water loss. We describe an accurate, repeatable and open‐source methodology to estimate g min . Such methodology could enhance models of plant mortality under drought. L’étude de la perte d’eau des feuilles après la fermeture des stomates est essentielle pour comprendre les effets d’une sécheresse prolongée sur la végétation. Il est donc important de quantifier précisément ces pertes pour améliorer les modèles de mortalité des plantes induite par la sécheresse. Nous avons mesuré en continu la perte d’eau de feuilles détachées pendant la déshydratation chez neuf espèces d’angiospermes et calculé la conductance foliaire minimale ( g min ) à différents seuils de potentiel hydrique correspondants aux seuils de pertes de fonctions physiologiques, allant du point de perte de turgescence à la défaillance hydraulique. Un modèle mécaniste a évalué l’impact des différentes estimations de g min sur le temps de défaillance hydraulique (THF). La conductance résiduelle n’est pas stable et diminue continuellement à des rythmes variés d’une espèce à l’autre pendant toute la durée du processus de déshydratation, même après correction du rétrécissement des feuille. La prise en compte des variations de l’estimations de g min a un impact significatif sur le THF prédit par le modèle, en particulier pour les espèces résistantes à la sécheresse. Nous démontrons que la conductance résiduelle est variable au cours de la déshydratation, et qu’il est donc important de préciser pour quelles limites physiologiques ou état hydrique l’estimation de g min a été effectué. Nous décrivons une méthodologie précise, reproductible et open‐source pour cette estimation. Une telle méthodologie pourrait améliorer les modèles de mortalité des plantes lors de sécheresse.
Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology-based models of drought-induced plant mortality. We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance (gmin) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different gmin estimations on the time to hydraulic failure (THF). Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of gmin had a significant impact on the THF predicted by the model, especially for drought-resistant species. We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct gmin values of water loss. We describe an accurate, repeatable and open-source methodology to estimate gmin. Such methodology could enhance models of plant mortality under drought.Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology-based models of drought-induced plant mortality. We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance (gmin) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different gmin estimations on the time to hydraulic failure (THF). Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of gmin had a significant impact on the THF predicted by the model, especially for drought-resistant species. We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct gmin values of water loss. We describe an accurate, repeatable and open-source methodology to estimate gmin. Such methodology could enhance models of plant mortality under drought.
Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology-based models of drought-induced plant mortality.We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance (g min ) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different g min estimations on the time to hydraulic failure (THF).Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of g min had a significant impact on the THF predicted by the model, especially for drought-resistant species.We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct g min values of water loss. We describe an accurate, repeatable and open-source methodology to estimate g min . Such methodology could enhance models of plant mortality under drought
Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology‐based models of drought‐induced plant mortality.We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance (g min) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different g min estimations on the time to hydraulic failure (THF).Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of g min had a significant impact on the THF predicted by the model, especially for drought‐resistant species.We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct g min values of water loss. We describe an accurate, repeatable and open‐source methodology to estimate g min. Such methodology could enhance models of plant mortality under drought.
Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology‐based models of drought‐induced plant mortality. We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance (gₘᵢₙ) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different gₘᵢₙ estimations on the time to hydraulic failure (THF). Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of gₘᵢₙ had a significant impact on the THF predicted by the model, especially for drought‐resistant species. We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct gₘᵢₙ values of water loss. We describe an accurate, repeatable and open‐source methodology to estimate gₘᵢₙ. Such methodology could enhance models of plant mortality under drought.
Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology‐based models of drought‐induced plant mortality. We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance (gmin) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different gmin estimations on the time to hydraulic failure (THF). Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of gmin had a significant impact on the THF predicted by the model, especially for drought‐resistant species. We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct gmin values of water loss. We describe an accurate, repeatable and open‐source methodology to estimate gmin. Such methodology could enhance models of plant mortality under drought.
Summary Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology‐based models of drought‐induced plant mortality. We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance (gmin) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different gmin estimations on the time to hydraulic failure (THF). Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of gmin had a significant impact on the THF predicted by the model, especially for drought‐resistant species. We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct gmin values of water loss. We describe an accurate, repeatable and open‐source methodology to estimate gmin. Such methodology could enhance models of plant mortality under drought. Résumé L’étude de la perte d’eau des feuilles après la fermeture des stomates est essentielle pour comprendre les effets d’une sécheresse prolongée sur la végétation. Il est donc important de quantifier précisément ces pertes pour améliorer les modèles de mortalité des plantes induite par la sécheresse. Nous avons mesuré en continu la perte d’eau de feuilles détachées pendant la déshydratation chez neuf espèces d’angiospermes et calculé la conductance foliaire minimale (gmin) à différents seuils de potentiel hydrique correspondants aux seuils de pertes de fonctions physiologiques, allant du point de perte de turgescence à la défaillance hydraulique. Un modèle mécaniste a évalué l’impact des différentes estimations de gmin sur le temps de défaillance hydraulique (THF). La conductance résiduelle n’est pas stable et diminue continuellement à des rythmes variés d’une espèce à l’autre pendant toute la durée du processus de déshydratation, même après correction du rétrécissement des feuille. La prise en compte des variations de l’estimations de gmin a un impact significatif sur le THF prédit par le modèle, en particulier pour les espèces résistantes à la sécheresse. Nous démontrons que la conductance résiduelle est variable au cours de la déshydratation, et qu’il est donc important de préciser pour quelles limites physiologiques ou état hydrique l’estimation de gmin a été effectué. Nous décrivons une méthodologie précise, reproductible et open‐source pour cette estimation. Une telle méthodologie pourrait améliorer les modèles de mortalité des plantes lors de sécheresse.
Author Delzon, Sylvain
Forget, Guillaume
Burlett, Régis
Parise, Camille
Trueba, Santiago
Martin‐StPaul, Nicolas K.
Bouteiller, Xavier Paul
Torres‐Ruiz, José M.
Cochard, Hervé
AuthorAffiliation 2 AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD Montpellier 34398 France
3 Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC) Seville 41012 Spain
4 INRAE, UEFP Avignon 84914 France
5 INRAE, PIAF, Université Clermont Auvergne Clermont‐Ferrand 63000 France
1 INRAE, UMR BIOGECO, Université de Bordeaux Pessac 33615 France
AuthorAffiliation_xml – name: 2 AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD Montpellier 34398 France
– name: 1 INRAE, UMR BIOGECO, Université de Bordeaux Pessac 33615 France
– name: 5 INRAE, PIAF, Université Clermont Auvergne Clermont‐Ferrand 63000 France
– name: 3 Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC) Seville 41012 Spain
– name: 4 INRAE, UEFP Avignon 84914 France
Author_xml – sequence: 1
  givenname: Régis
  orcidid: 0000-0001-8289-5757
  surname: Burlett
  fullname: Burlett, Régis
  email: regis.burlett@u-bordeaux.fr
  organization: INRAE, UMR BIOGECO, Université de Bordeaux
– sequence: 2
  givenname: Santiago
  orcidid: 0000-0001-8218-957X
  surname: Trueba
  fullname: Trueba, Santiago
  organization: AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD
– sequence: 3
  givenname: Xavier Paul
  orcidid: 0000-0001-8621-383X
  surname: Bouteiller
  fullname: Bouteiller, Xavier Paul
  organization: INRAE, UMR BIOGECO, Université de Bordeaux
– sequence: 4
  givenname: Guillaume
  orcidid: 0009-0000-4778-3194
  surname: Forget
  fullname: Forget, Guillaume
  organization: INRAE, UMR BIOGECO, Université de Bordeaux
– sequence: 5
  givenname: José M.
  orcidid: 0000-0003-1367-7056
  surname: Torres‐Ruiz
  fullname: Torres‐Ruiz, José M.
  organization: Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC)
– sequence: 6
  givenname: Nicolas K.
  orcidid: 0000-0001-7574-0108
  surname: Martin‐StPaul
  fullname: Martin‐StPaul, Nicolas K.
  organization: INRAE, UEFP
– sequence: 7
  givenname: Camille
  orcidid: 0000-0001-5222-4928
  surname: Parise
  fullname: Parise, Camille
  organization: INRAE, UMR BIOGECO, Université de Bordeaux
– sequence: 8
  givenname: Hervé
  orcidid: 0000-0002-2727-7072
  surname: Cochard
  fullname: Cochard, Hervé
  organization: INRAE, PIAF, Université Clermont Auvergne
– sequence: 9
  givenname: Sylvain
  orcidid: 0000-0003-3442-1711
  surname: Delzon
  fullname: Delzon, Sylvain
  organization: INRAE, UMR BIOGECO, Université de Bordeaux
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40059431$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-04986793$$DView record in HAL
BookMark eNqFkk2PFCEQholZ486uHvwDhsSLHnoXaJoGL2azUcdk_Dho4o3U0PQMm25o6abN_HsZZ111EpULoXjqpd6iztCJD94i9JiSC5rXpR-2FzUhFbuHFpQLVUha1idoQQiTheDiyyk6G8cbQoiqBHuATnmGFS_pAsE7512fetxZaLEJvklmAm8sblJ0foObGNJmO73AyUeYbdftg24a8QzRwdp1btph8A12_QBmwsHjoQM_4THF2c3QPUT3W-hG--h2P0efX7_6dL0sVh_evL2-WhWmoiUrbG24aAhIRWWtDLT5YIFUlJZ2vQbGBeVNaVglats2rajKChphVF1VDePQlufo5UF3SOveNsb6KUKnh-h6iDsdwOk_b7zb6k2YNaVKslqVWeH5QWF7lLe8Wul9jHAlRSZnmtlnt6_F8DXZcdK9G01uD3gb0qhLRgSjQkr2f5TW2ZQStMro0yP0JqToc9syJWUulBOeqSe_O70r9eev_jJiYhjHaNs7hBK9nxidJ0b_mJjMXh6xxk0wubBvkuv-lfHNdXb3d2n9_uPykPEdbFTR_g
CitedBy_id crossref_primary_10_1093_treephys_tpaf090
Cites_doi 10.1093/oxfordjournals.aob.a089398
10.5194/gmd-15-5593-2022
10.1093/treephys/tpz110
10.1007/s13595-021-01067-y
10.1016/B978-0-12-374143-1.00002-8
10.1016/S1360-1385(96)90007-2
10.1111/nph.19463
10.1093/jxb/erz474
10.1038/s41598-019-56847-4
10.1093/treephys/tpt030
10.3389/fpls.2017.00054
10.1002/jgrg.20112
10.1111/nph.15395
10.1007/s13595-020-00944-2
10.1111/nph.15779
10.1111/pce.13750
10.1111/j.1365-3040.1993.tb00511.x
10.1111/nph.16571
10.1111/ele.12851
10.1093/jxb/23.1.267
10.1111/nph.12798
10.1111/nph.18578
10.1007/978-94-009-2221-1_8
10.1007/978-94-010-9013-1_9
10.1111/j.1365-3040.1981.tb02111.x
10.1111/nph.19898
10.1104/pp.113.221424
10.1104/pp.114.1.185
10.1111/j.1365-3040.1988.tb01774.x
10.1073/pnas.1010070108
10.1186/s13595-022-01124-0
10.1111/nph.16941
10.1104/pp.105.069724
10.1073/pnas.95.25.14839
10.1093/conphys/coz046
10.1007/s13595-018-0768-9
10.1093/jxb/49.Special_Issue.407
10.1111/pce.12688
10.1093/jxb/erad352
10.1038/s41467-022-29289-2
10.1111/plb.13384
10.1111/j.1469-8137.2006.01826.x
10.1111/nph.15886
10.1093/plphys/kiac034
10.1046/j.1365-3040.2002.00863.x
10.1093/jxb/42.2.167
10.1073/pnas.2025251118
10.1111/nph.15079
10.1111/pce.14274
10.1038/srep23418
10.1038/nature11688
10.1111/nph.17588
10.1046/j.1469-8137.2003.00736.x
ContentType Journal Article
Copyright 2025 The Author(s). © 2025 New Phytologist Foundation.
2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation.
2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution - NonCommercial
Copyright_xml – notice: 2025 The Author(s). © 2025 New Phytologist Foundation.
– notice: 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation.
– notice: 2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution - NonCommercial
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
VOOES
5PM
DOI 10.1111/nph.70052
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic


AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Environmental Sciences
EISSN 1469-8137
EndPage 1014
ExternalDocumentID PMC11982793
oai:HAL:hal-04986793v1
40059431
10_1111_nph_70052
NPH70052
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  funderid: ANR‐10‐LABX‐45
– fundername: Université de Bordeaux
  funderid: IDEX Investments for the Future program/GPR B
– fundername: Université de Bordeaux
  grantid: IDEX Investments for the Future program/GPR B
– fundername: Agence Nationale de la Recherche
  grantid: ANR-10-LABX-45
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABGDZ
ABUFD
ADXHL
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
VOOES
5PM
ID FETCH-LOGICAL-c5132-e7c46d0a891879caf6d0ea05113ebba24614d3c2567efdf6535ad6c9755d24af3
IEDL.DBID 24P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001440270700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-646X
1469-8137
IngestDate Tue Nov 04 02:03:47 EST 2025
Sat Nov 29 15:02:25 EST 2025
Fri Sep 05 16:06:49 EDT 2025
Sun Nov 09 14:21:53 EST 2025
Sat Aug 23 12:41:53 EDT 2025
Sun Apr 13 01:30:53 EDT 2025
Tue Nov 18 21:50:50 EST 2025
Sat Nov 29 07:55:44 EST 2025
Thu Apr 10 11:07:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords turgor loss point
drought stress
water potential
relative water content
cuticular conductance
stomatal closure
Drought stress
Stomatal closure
Water potential
Cuticular conductance
Turgor loss point
Relative water content
Language English
License Attribution-NonCommercial
2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation.
Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5132-e7c46d0a891879caf6d0ea05113ebba24614d3c2567efdf6535ad6c9755d24af3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0000-4778-3194
0000-0001-8289-5757
0000-0003-1367-7056
0000-0001-7574-0108
0000-0001-5222-4928
0000-0002-2727-7072
0000-0003-3442-1711
0000-0001-8218-957X
0000-0001-8621-383X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.70052
PMID 40059431
PQID 3188198404
PQPubID 2026848
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11982793
hal_primary_oai_HAL_hal_04986793v1
proquest_miscellaneous_3206216882
proquest_miscellaneous_3175679615
proquest_journals_3188198404
pubmed_primary_40059431
crossref_primary_10_1111_nph_70052
crossref_citationtrail_10_1111_nph_70052
wiley_primary_10_1111_nph_70052_NPH70052
PublicationCentury 2000
PublicationDate May 2025
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
– name: Hoboken
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Wiley
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
– name: John Wiley and Sons Inc
References 1998; 49
1997; 114
2023; 74
2017; 8
2022b; 4
2022; 24
2020; 10
2006; 171
2003; 158
2016; 39
2016; 36
2022a; 15
2012; 491
2021; 78
2000
2018; 218
1991; 42
2013; 118
2021; 118
2022; 79
1996; 1
2020; 43
1998; 95
2018; 75
2014; 164
2014; 203
1989
2019; 7
2022; 233
2018; 221
2017; 20
1912; 26
2010
2021; 229
1981; 4
2022; 45
2009
1988; 11
2019; 223
2024; 241
2020; 227
2024; 244
2020; 77
1972; 23
1956
2022; 189
2002; 25
2016; 6
2011; 108
2019; 40
1993; 16
2013; 33
2022
2020; 71
2006; 140
2022; 13
2023; 237
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
R Core Team (e_1_2_9_42_1) 2022
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
Ruffault J (e_1_2_9_45_1) 2022; 4
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Stålfelt MG (e_1_2_9_54_1) 1956
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
Li S (e_1_2_9_31_1) 2016; 36
References_xml – volume: 25
  start-page: 815
  year: 2002
  end-page: 819
  article-title: A technique for measuring xylem hydraulic conductance under high negative pressures
  publication-title: Plant, Cell & Environment
– volume: 223
  start-page: 134
  year: 2019
  end-page: 149
  article-title: Thresholds for leaf damage due to dehydration: declines of hydraulic function, stomatal conductance and cellular integrity precede those for photochemistry
  publication-title: New Phytologist
– year: 1956
– volume: 95
  start-page: 14839
  year: 1998
  end-page: 14842
  article-title: Drought‐induced shift of a forest–woodland ecotone: Rapid landscape response to climate variation
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 24
  start-page: 1208
  year: 2022
  end-page: 1223
  article-title: Stem and leaf xylem of angiosperm trees experiences minimal embolism in temperate forests during two consecutive summers with moderate drought
  publication-title: Plant Biology
– volume: 233
  start-page: 156
  year: 2022
  end-page: 168
  article-title: Cuticular conductance of adaxial and abaxial leaf surfaces and its relation to minimum leaf surface conductance
  publication-title: New Phytologist
– volume: 15
  start-page: 5593
  year: 2022a
  end-page: 5626
  article-title: S E ‐E v.2.0: a trait‐based plant hydraulics model for simulations of plant water status and drought‐induced mortality at the ecosystem level
  publication-title: Geoscientific Model Development
– volume: 49
  start-page: 407
  year: 1998
  end-page: 417
  article-title: Stomatal heterogeneity
  publication-title: Journal of Experimental Botany
– start-page: 161
  year: 2000
  end-page: 183
– volume: 229
  start-page: 1415
  year: 2021
  end-page: 1430
  article-title: Where do leaf water leaks come from? Trade‐offs underlying the variability in minimum conductance across tropical savanna species with contrasting growth strategies
  publication-title: New Phytologist
– volume: 140
  start-page: 176
  year: 2006
  end-page: 183
  article-title: Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco
  publication-title: Plant Physiology
– volume: 36
  start-page: 179
  year: 2016
  end-page: 192
  article-title: Leaf gas exchange performance and the lethal water potential of five European species during drought
  publication-title: Tree Physiology
– volume: 71
  start-page: 1151
  year: 2020
  end-page: 1159
  article-title: Xylem embolism in leaves does not occur with open stomata: evidence from direct observations using the optical visualization technique
  publication-title: Journal of Experimental Botany
– volume: 241
  start-page: 984
  year: 2024
  end-page: 999
  article-title: Plant hydraulics at the heart of plant, crops and ecosystem functions in the face of climate change
  publication-title: New Phytologist
– volume: 33
  start-page: 672
  year: 2013
  end-page: 683
  article-title: Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees
  publication-title: Tree Physiology
– volume: 79
  year: 2022
  article-title: Measuring xylem hydraulic vulnerability for long‐vessel species: an improved methodology with the flow centrifugation technique
  publication-title: Annals of Forest Science
– volume: 171
  start-page: 469
  year: 2006
  end-page: 499
  article-title: The effects of stress on plant cuticular waxes
  publication-title: New Phytologist
– volume: 108
  start-page: 1474
  year: 2011
  end-page: 1478
  article-title: Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change‐type drought
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 118
  year: 2021
  article-title: Rapid hydraulic collapse as cause of drought‐induced mortality in conifers
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 7
  start-page: 1
  year: 2019
  end-page: 7
  article-title: Measuring the pulse of trees; using the vascular system to predict tree mortality in the 21st century
  publication-title: Conservation Physiology
– volume: 218
  start-page: 1025
  year: 2018
  end-page: 1035
  article-title: Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots
  publication-title: New Phytologist
– volume: 114
  start-page: 185
  year: 1997
  end-page: 191
  article-title: CO and water vapor exchange across leaf cuticle (epidermis) at various water potentials
  publication-title: Plant Physiology
– volume: 13
  start-page: 1761
  year: 2022
  article-title: Global field observations of tree die‐off reveal hotter‐drought fingerprint for Earth's forests
  publication-title: Nature Communications
– volume: 20
  start-page: 1437
  year: 2017
  end-page: 1447
  article-title: Plant resistance to drought depends on timely stomatal closure
  publication-title: Ecology Letters
– volume: 75
  start-page: 88
  year: 2018
  article-title: An inconvenient truth about xylem resistance to embolism in the model species for refilling L
  publication-title: Annals of Forest Science
– volume: 189
  start-page: 204
  year: 2022
  end-page: 214
  article-title: Hydraulic vulnerability segmentation in compound‐leaved trees: evidence from an embolism visualization technique
  publication-title: Plant Physiology
– volume: 227
  start-page: 698
  year: 2020
  end-page: 713
  article-title: Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress
  publication-title: New Phytologist
– year: 2022
– volume: 164
  start-page: 1772
  year: 2014
  end-page: 1788
  article-title: Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance
  publication-title: Plant Physiology
– volume: 74
  start-page: 6847
  year: 2023
  end-page: 6859
  article-title: Drought survival in conifer species is related to the time required to cross the stomatal safety margin
  publication-title: Journal of Experimental Botany
– volume: 8
  year: 2017
  article-title: Effect of leaf water potential on internal humidity and CO dissolution: reverse transpiration and improved water use efficiency under negative pressure
  publication-title: Frontiers in Plant Science
– volume: 203
  start-page: 355
  year: 2014
  end-page: 358
  article-title: Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin
  publication-title: New Phytologist
– volume: 244
  start-page: 464
  year: 2024
  end-page: 476
  article-title: Evidence for within‐species transition between drought response strategies in
  publication-title: New Phytologist
– volume: 43
  start-page: 1584
  year: 2020
  end-page: 1594
  article-title: The DroughtBox: a new tool for phenotyping residual branch conductance and its temperature dependence during drought
  publication-title: Plant, Cell & Environment
– volume: 4
  start-page: 349
  year: 1981
  end-page: 354
  article-title: Water permeability of plant cuticular membranes: the effects of humidity and temperature on the permeability of non‐isolated cuticles of onion bulb scales
  publication-title: Plant, Cell & Environment
– volume: 40
  start-page: 827
  year: 2019
  end-page: 840
  article-title: Cuticular wax coverage and its transpiration barrier properties in L. leaves: does the environment matter?
  publication-title: Tree Physiology
– volume: 26
  start-page: 409
  year: 1912
  end-page: 442
  article-title: Transpiration in succulent plants
  publication-title: Annals of Botany
– volume: 221
  start-page: 693
  year: 2018
  end-page: 705
  article-title: On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls
  publication-title: New Phytologist
– volume: 39
  start-page: 1886
  year: 2016
  end-page: 1894
  article-title: Grapevine petioles are more sensitive to drought induced embolism than stems: evidence from MRI and microcomputed tomography observations of hydraulic vulnerability segmentation
  publication-title: Plant, Cell & Environment
– volume: 223
  start-page: 1296
  year: 2019
  end-page: 1306
  article-title: No local adaptation in leaf or stem xylem vulnerability to embolism, but consistent vulnerability segmentation in a North American oak
  publication-title: New Phytologist
– volume: 6
  year: 2016
  article-title: Impact of the representation of stomatal conductance on model projections of heatwave intensity
  publication-title: Scientific Reports
– volume: 42
  start-page: 167
  year: 1991
  end-page: 171
  article-title: Cell membrane stability and leaf surface wax content as affected by increasing water deficits in maize
  publication-title: Journal of Experimental Botany
– volume: 45
  start-page: 1157
  year: 2022
  end-page: 1171
  article-title: Increased cuticular wax deposition does not change residual foliar transpiration
  publication-title: Plant, Cell & Environment
– volume: 4
  start-page: 1318
  year: 2022b
  end-page: 1322
  article-title: S E ‐E ‐FMC: mechanistic modelling of fuel moisture content (FMC) at leaf and canopy scale under extreme drought
  publication-title: Journal of Advances in Forest Fire Research
– year: 2010
– volume: 237
  start-page: 793
  year: 2023
  end-page: 806
  article-title: On the path from xylem hydraulic failure to downstream cell death
  publication-title: New Phytologist
– start-page: 44
  year: 2009
  end-page: 99
– volume: 23
  start-page: 267
  year: 1972
  end-page: 282
  article-title: The measurement of the turgor pressure and the water relations of plants by the pressure‐bomb technique
  publication-title: Journal of Experimental Botany
– volume: 10
  start-page: 1
  year: 2020
  end-page: 12
  article-title: Drought stress modify cuticle of tender tea leaf and mature leaf for transpiration barrier enhancement through common and distinct modes
  publication-title: Scientific Reports
– volume: 11
  start-page: 35
  year: 1988
  end-page: 40
  article-title: A method for measuring hydraulic conductivity and embolism in xylem
  publication-title: Plant, Cell & Environment
– start-page: 137
  year: 1989
  end-page: 160
– volume: 78
  start-page: 55
  year: 2021
  article-title: SurEau: a mechanistic model of plant water relations under extreme drought
  publication-title: Annals of Forest Science
– volume: 77
  start-page: 1
  year: 2020
  end-page: 12
  article-title: Lack of vulnerability segmentation in four angiosperm tree species: evidence from direct X-ray microtomography observation
  publication-title: Annals of Forest Science
– volume: 16
  start-page: 879
  year: 1993
  end-page: 882
  article-title: Drought‐induced leaf shedding in walnut: evidence for vulnerability segmentation
  publication-title: Plant, Cell & Environment
– volume: 491
  start-page: 752
  year: 2012
  end-page: 755
  article-title: Global convergence in the vulnerability of forests to drought
  publication-title: Nature
– volume: 118
  start-page: 1322
  year: 2013
  end-page: 1333
  article-title: The implications of minimum stomatal conductance on modeling water flux in forest canopies
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 1
  start-page: 125
  year: 1996
  end-page: 129
  article-title: Signalling across the divide: a wider perspective of cuticular structure‐function relationships
  publication-title: Trends in Plant Science
– volume: 158
  start-page: 295
  year: 2003
  end-page: 303
  article-title: Changes in leaf hydraulic conductance during leaf shedding in seasonally dry tropical forest
  publication-title: New Phytologist
– ident: e_1_2_9_19_1
  doi: 10.1093/oxfordjournals.aob.a089398
– ident: e_1_2_9_44_1
  doi: 10.5194/gmd-15-5593-2022
– ident: e_1_2_9_10_1
  doi: 10.1093/treephys/tpz110
– ident: e_1_2_9_17_1
  doi: 10.1007/s13595-021-01067-y
– ident: e_1_2_9_38_1
  doi: 10.1016/B978-0-12-374143-1.00002-8
– volume: 36
  start-page: 179
  year: 2016
  ident: e_1_2_9_31_1
  article-title: Leaf gas exchange performance and the lethal water potential of five European species during drought
  publication-title: Tree Physiology
– volume-title: Pflanze und Wasser/water relations of plants. Handbuch der Pflanzenphysiologie/encyclopedia of plant physiology
  year: 1956
  ident: e_1_2_9_54_1
– ident: e_1_2_9_27_1
  doi: 10.1016/S1360-1385(96)90007-2
– ident: e_1_2_9_55_1
  doi: 10.1111/nph.19463
– ident: e_1_2_9_18_1
  doi: 10.1093/jxb/erz474
– ident: e_1_2_9_47_1
– ident: e_1_2_9_14_1
  doi: 10.1038/s41598-019-56847-4
– ident: e_1_2_9_59_1
  doi: 10.1093/treephys/tpt030
– ident: e_1_2_9_60_1
  doi: 10.3389/fpls.2017.00054
– ident: e_1_2_9_5_1
  doi: 10.1002/jgrg.20112
– ident: e_1_2_9_21_1
  doi: 10.1111/nph.15395
– ident: e_1_2_9_32_1
  doi: 10.1007/s13595-020-00944-2
– ident: e_1_2_9_56_1
  doi: 10.1111/nph.15779
– ident: e_1_2_9_6_1
  doi: 10.1111/pce.13750
– ident: e_1_2_9_57_1
  doi: 10.1111/j.1365-3040.1993.tb00511.x
– ident: e_1_2_9_30_1
  doi: 10.1111/nph.16571
– ident: e_1_2_9_36_1
  doi: 10.1111/ele.12851
– ident: e_1_2_9_58_1
  doi: 10.1093/jxb/23.1.267
– ident: e_1_2_9_46_1
– ident: e_1_2_9_20_1
  doi: 10.1111/nph.12798
– ident: e_1_2_9_34_1
  doi: 10.1111/nph.18578
– ident: e_1_2_9_39_1
  doi: 10.1007/978-94-009-2221-1_8
– ident: e_1_2_9_28_1
  doi: 10.1007/978-94-010-9013-1_9
– ident: e_1_2_9_48_1
  doi: 10.1111/j.1365-3040.1981.tb02111.x
– ident: e_1_2_9_4_1
  doi: 10.1111/nph.19898
– ident: e_1_2_9_49_1
  doi: 10.1104/pp.113.221424
– ident: e_1_2_9_7_1
  doi: 10.1104/pp.114.1.185
– ident: e_1_2_9_53_1
  doi: 10.1111/j.1365-3040.1988.tb01774.x
– ident: e_1_2_9_13_1
  doi: 10.1073/pnas.1010070108
– ident: e_1_2_9_11_1
  doi: 10.1186/s13595-022-01124-0
– ident: e_1_2_9_33_1
  doi: 10.1111/nph.16941
– ident: e_1_2_9_12_1
  doi: 10.1104/pp.105.069724
– volume-title: R: a language and environment for statistical computing
  year: 2022
  ident: e_1_2_9_42_1
– ident: e_1_2_9_2_1
  doi: 10.1073/pnas.95.25.14839
– ident: e_1_2_9_8_1
  doi: 10.1093/conphys/coz046
– ident: e_1_2_9_29_1
  doi: 10.1007/s13595-018-0768-9
– ident: e_1_2_9_37_1
  doi: 10.1093/jxb/49.Special_Issue.407
– ident: e_1_2_9_25_1
  doi: 10.1111/pce.12688
– ident: e_1_2_9_40_1
  doi: 10.1093/jxb/erad352
– ident: e_1_2_9_24_1
  doi: 10.1038/s41467-022-29289-2
– ident: e_1_2_9_23_1
  doi: 10.1111/plb.13384
– ident: e_1_2_9_50_1
  doi: 10.1111/j.1469-8137.2006.01826.x
– ident: e_1_2_9_51_1
  doi: 10.1111/nph.15886
– ident: e_1_2_9_52_1
  doi: 10.1093/plphys/kiac034
– ident: e_1_2_9_16_1
  doi: 10.1046/j.1365-3040.2002.00863.x
– ident: e_1_2_9_41_1
  doi: 10.1093/jxb/42.2.167
– ident: e_1_2_9_3_1
  doi: 10.1073/pnas.2025251118
– ident: e_1_2_9_43_1
  doi: 10.1111/nph.15079
– volume: 4
  start-page: 1318
  year: 2022
  ident: e_1_2_9_45_1
  article-title: SurEau‐Ecos‐FMC: mechanistic modelling of fuel moisture content (FMC) at leaf and canopy scale under extreme drought
  publication-title: Journal of Advances in Forest Fire Research
– ident: e_1_2_9_22_1
  doi: 10.1111/pce.14274
– ident: e_1_2_9_26_1
  doi: 10.1038/srep23418
– ident: e_1_2_9_15_1
  doi: 10.1038/nature11688
– ident: e_1_2_9_35_1
  doi: 10.1111/nph.17588
– ident: e_1_2_9_9_1
  doi: 10.1046/j.1469-8137.2003.00736.x
SSID ssj0009562
Score 2.485154
Snippet Summary Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately...
Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1001
SubjectTerms Angiospermae
Conductance
cuticular conductance
Dehydration
Drought
drought stress
drought tolerance
Droughts
Environmental Sciences
Expressed sequence tags
leaf conductance
Leaves
Magnoliopsida - physiology
mechanistic models
Models, Biological
Mortality
Physiological functions
Physiology
Plant Leaves - physiology
Plant Stomata - physiology
Plant Transpiration - physiology
Plants
Plants (botany)
relative water content
shrinkage
species
Stomata
stomatal closure
stomatal movement
Turgor
turgor loss point
Vapor pressure
vapor pressure deficit
Vapour pressure
vegetation
Water
Water - physiology
Water loss
Water potential
Title Minimum leaf conductance during drought: unravelling its variability and impact on plant survival
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.70052
https://www.ncbi.nlm.nih.gov/pubmed/40059431
https://www.proquest.com/docview/3188198404
https://www.proquest.com/docview/3175679615
https://www.proquest.com/docview/3206216882
https://hal.inrae.fr/hal-04986793
https://pubmed.ncbi.nlm.nih.gov/PMC11982793
Volume 246
WOSCitedRecordID wos001440270700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-8137
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009562
  issn: 0028-646X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7t68CF5bkUlpVBHLgENYljJ8tpeVQ9lKpCLOotcuxEjdR1q01Taf89M85DrRYQEhcriSey45mxZxzPNwDvCpmITBrumUAmHjeh9hR6Qp6v0RmJfcWli_D-OZHTaTyfJ7MD-NjFwjT4EP2GG2mGm69JwVVW7Si5XS8-SNrVPIRj3w9jytsQ8NkO4q4IOghmwcW8hRWiYzz9q3uL0eGCjkLetzPvH5fcNWPdOjQ6_a8veAQPW_OTXTXy8hgOcvsETj6t0ES8ewrqW2nLm_qGLXNVMPSUCQyWxII10YzMuKQ-m0tWW0pb5PC8Wbmp2BZd7gbx-44pa1gTfMlWlq2XyDtW1TgloVA_g-vR1x-fx16bg8HTETqqXi41F2ao4oTSkmtV4E2uUJP9MM8yRWh0xGA0nGRemEJEYaSM0ImMIhNwVYTP4ciubP4CWFRwXw-HRmDJE4O2XpHFQaIzyluE08wA3nfMSHULUE55MpZp56jggKVuwAbwtiddN6gcvyVCjvb1hKM9vpqk9AzbJ6DBcIuNnncMT1vtrVKc59BQQteXD-BNX416Rz9TlM1XNdHIiPbg_OgvNMFQBL5AJ2YAZ40M9d3hDiknxA7Ee9K119_9GlsuHP63j31DzQpxwJx4_XkI0uls7C5e_jvpK3gQUI5jd6jzHI42t3X-Gk70dlNWtxdOx7CU8_gCjr98H11PfgGm_ivS
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7tLivBhfejsIBBHLgENYljJ4jLglgV0a16WFBvkWM7aqSuW22bSvvvmXEearWAkLhESTxRnHl5xrG_AXhXykwU0vDARDILuIl1oDATCkKNyUgaKi79Du-fYzmZpLNZNj2AT91emAYfop9wI8vw_poMnCakd6zcreYfJE1rHsItjqMMaXnEpzuQuyLqMJgFF7MWV4jW8fSP7o1Gh3NaC3kz0Ly5XnI3jvUD0dm9__uE-3C3DUDZaaMxD-DAuodw_HmJQeL1I1Dnlasu60u2sKpkmCsTHCwpBmv2MzLjy_psPrLaUeEij-jNqs2abTHpbjC_r5lyhjXbL9nSsdUCpcfWNTolVOvH8OPs68WXUdBWYQh0gqlqYKXmwgxVmlFhcq1KvLAKbTmMbVEowqMjEWPoJG1pSpHEiTJCZzJJTMRVGT-BI7d09hmwpOShHg6NwCPPDEZ7ZZFGmS6ochE6mgG876SR6xainCplLPIuVUGG5Z5hA3jbk64aXI7fEqFI-3ZC0h6djnO6h-8nqMF4iy896SSet_a7ztHTYaiEyS8fwJu-GS2PfqcoZ5c10ciEZuHC5C800VBEocA0ZgBPGyXqu8M9Vk6MHUj31Guvv_strpp7BPAQ-4a2FSPDvH79mQX5ZDryJ8__nfQ13B5dnI_z8bfJ9xdwJ6KKx36J5wkcba5q-xKO9XZTra9eeYP7BQD0LTU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9t3YR44fujMMAgHnjJ1CSOnSBeBqMqolQVYqhvkWMnaqTOrdam0v577pwPtRogJF6iJL4oju_OvnPufgfwtpCJyKThnglk4nETak-hJ-T5Gp2R2Fdcugzvn2M5mcSzWTI9gA9tLkyND9FtuJFmuPmaFDxfmWJHy-1qfippW_MQjjgVkenB0fn34cV4B3RXBC0Ks-Bi1iALUSRP9_DeenQ4p2jIm6bmzYjJXUvWLUXDu__3EffgTmOCsrNaZu7DQW4fwPHHJZqJ1w9BfStteVldskWuCobeMgHCkmiwOqORGVfYZ_OeVZZKFzlMb1Zu1myLbneN-n3NlDWsTsBkS8tWC-QfW1c4LaFgP4KL4ecfn0ZeU4fB0xE6q14uNRdmoOKESpNrVeBFrlCb_TDPMkWIdMRkNJ5kXphCRGGkjNCJjCITcFWEj6FnlzZ_CiwquK8HAyPwyBOD9l6RxUGiM6pdhFNNH9613Eh1A1JOtTIWaeus4IClbsD68KYjXdXIHL8lQpZ27YSlPTobp3QP309gg-EWX3rScjxtNHid4lyHxhK6v7wPr7tm1D36oaJsvqyIRka0D-dHf6EJBiLwBToyfXhSC1HXHe7QckLsQLwnXnv93W-x5dxhgPvYN9SuEAfMydefhyCdTEfu5Nm_k76CW9PzYTr-Mvn6HG4HVPLYxXieQG9zVeUv4FhvN-X66mWjcb8Av5suSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimum+leaf+conductance+during+drought%3A+unravelling+its+variability+and+impact+on+plant+survival&rft.jtitle=The+New+phytologist&rft.au=Burlett%2C+R%C3%A9gis&rft.au=Trueba%2C+Santiago&rft.au=Bouteiller%2C+Xavier+Paul&rft.au=Forget%2C+Guillaume&rft.date=2025-05-01&rft.eissn=1469-8137&rft.volume=246&rft.issue=3&rft.spage=1001&rft_id=info:doi/10.1111%2Fnph.70052&rft_id=info%3Apmid%2F40059431&rft.externalDocID=40059431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon