Minimum leaf conductance during drought: unravelling its variability and impact on plant survival
Summary Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology‐based models of drought‐induced plant mortality. We measured water loss of detached leaves c...
Uložené v:
| Vydané v: | The New phytologist Ročník 246; číslo 3; s. 1001 - 1014 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Wiley Subscription Services, Inc
01.05.2025
Wiley John Wiley and Sons Inc |
| Predmet: | |
| ISSN: | 0028-646X, 1469-8137, 1469-8137 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Summary
Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology‐based models of drought‐induced plant mortality.
We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance (gmin) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different gmin estimations on the time to hydraulic failure (THF).
Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of gmin had a significant impact on the THF predicted by the model, especially for drought‐resistant species.
We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct gmin values of water loss. We describe an accurate, repeatable and open‐source methodology to estimate gmin. Such methodology could enhance models of plant mortality under drought.
Résumé
L’étude de la perte d’eau des feuilles après la fermeture des stomates est essentielle pour comprendre les effets d’une sécheresse prolongée sur la végétation. Il est donc important de quantifier précisément ces pertes pour améliorer les modèles de mortalité des plantes induite par la sécheresse.
Nous avons mesuré en continu la perte d’eau de feuilles détachées pendant la déshydratation chez neuf espèces d’angiospermes et calculé la conductance foliaire minimale (gmin) à différents seuils de potentiel hydrique correspondants aux seuils de pertes de fonctions physiologiques, allant du point de perte de turgescence à la défaillance hydraulique. Un modèle mécaniste a évalué l’impact des différentes estimations de gmin sur le temps de défaillance hydraulique (THF).
La conductance résiduelle n’est pas stable et diminue continuellement à des rythmes variés d’une espèce à l’autre pendant toute la durée du processus de déshydratation, même après correction du rétrécissement des feuille. La prise en compte des variations de l’estimations de gmin a un impact significatif sur le THF prédit par le modèle, en particulier pour les espèces résistantes à la sécheresse.
Nous démontrons que la conductance résiduelle est variable au cours de la déshydratation, et qu’il est donc important de préciser pour quelles limites physiologiques ou état hydrique l’estimation de gmin a été effectué. Nous décrivons une méthodologie précise, reproductible et open‐source pour cette estimation. Une telle méthodologie pourrait améliorer les modèles de mortalité des plantes lors de sécheresse. |
|---|---|
| AbstractList | Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology-based models of drought-induced plant mortality. We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance (g
) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different g
estimations on the time to hydraulic failure (THF). Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of g
had a significant impact on the THF predicted by the model, especially for drought-resistant species. We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct g
values of water loss. We describe an accurate, repeatable and open-source methodology to estimate g
. Such methodology could enhance models of plant mortality under drought. Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology‐based models of drought‐induced plant mortality. We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance ( g min ) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different g min estimations on the time to hydraulic failure (THF). Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of g min had a significant impact on the THF predicted by the model, especially for drought‐resistant species. We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct g min values of water loss. We describe an accurate, repeatable and open‐source methodology to estimate g min . Such methodology could enhance models of plant mortality under drought. L’étude de la perte d’eau des feuilles après la fermeture des stomates est essentielle pour comprendre les effets d’une sécheresse prolongée sur la végétation. Il est donc important de quantifier précisément ces pertes pour améliorer les modèles de mortalité des plantes induite par la sécheresse. Nous avons mesuré en continu la perte d’eau de feuilles détachées pendant la déshydratation chez neuf espèces d’angiospermes et calculé la conductance foliaire minimale ( g min ) à différents seuils de potentiel hydrique correspondants aux seuils de pertes de fonctions physiologiques, allant du point de perte de turgescence à la défaillance hydraulique. Un modèle mécaniste a évalué l’impact des différentes estimations de g min sur le temps de défaillance hydraulique (THF). La conductance résiduelle n’est pas stable et diminue continuellement à des rythmes variés d’une espèce à l’autre pendant toute la durée du processus de déshydratation, même après correction du rétrécissement des feuille. La prise en compte des variations de l’estimations de g min a un impact significatif sur le THF prédit par le modèle, en particulier pour les espèces résistantes à la sécheresse. Nous démontrons que la conductance résiduelle est variable au cours de la déshydratation, et qu’il est donc important de préciser pour quelles limites physiologiques ou état hydrique l’estimation de g min a été effectué. Nous décrivons une méthodologie précise, reproductible et open‐source pour cette estimation. Une telle méthodologie pourrait améliorer les modèles de mortalité des plantes lors de sécheresse. Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology-based models of drought-induced plant mortality. We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance (gmin) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different gmin estimations on the time to hydraulic failure (THF). Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of gmin had a significant impact on the THF predicted by the model, especially for drought-resistant species. We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct gmin values of water loss. We describe an accurate, repeatable and open-source methodology to estimate gmin. Such methodology could enhance models of plant mortality under drought.Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology-based models of drought-induced plant mortality. We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance (gmin) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different gmin estimations on the time to hydraulic failure (THF). Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of gmin had a significant impact on the THF predicted by the model, especially for drought-resistant species. We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct gmin values of water loss. We describe an accurate, repeatable and open-source methodology to estimate gmin. Such methodology could enhance models of plant mortality under drought. Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology-based models of drought-induced plant mortality.We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance (g min ) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different g min estimations on the time to hydraulic failure (THF).Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of g min had a significant impact on the THF predicted by the model, especially for drought-resistant species.We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct g min values of water loss. We describe an accurate, repeatable and open-source methodology to estimate g min . Such methodology could enhance models of plant mortality under drought Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology‐based models of drought‐induced plant mortality.We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance (g min) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different g min estimations on the time to hydraulic failure (THF).Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of g min had a significant impact on the THF predicted by the model, especially for drought‐resistant species.We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct g min values of water loss. We describe an accurate, repeatable and open‐source methodology to estimate g min. Such methodology could enhance models of plant mortality under drought. Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology‐based models of drought‐induced plant mortality. We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance (gₘᵢₙ) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different gₘᵢₙ estimations on the time to hydraulic failure (THF). Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of gₘᵢₙ had a significant impact on the THF predicted by the model, especially for drought‐resistant species. We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct gₘᵢₙ values of water loss. We describe an accurate, repeatable and open‐source methodology to estimate gₘᵢₙ. Such methodology could enhance models of plant mortality under drought. Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology‐based models of drought‐induced plant mortality. We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance (gmin) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different gmin estimations on the time to hydraulic failure (THF). Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of gmin had a significant impact on the THF predicted by the model, especially for drought‐resistant species. We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct gmin values of water loss. We describe an accurate, repeatable and open‐source methodology to estimate gmin. Such methodology could enhance models of plant mortality under drought. Summary Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify such water losses to improve physiology‐based models of drought‐induced plant mortality. We measured water loss of detached leaves continuously during dehydration in nine woody angiosperm species. We computed minimum leaf conductance (gmin) at different water potential thresholds along a sequence of physiological function losses, spanning from turgor loss point to hydraulic failure. A mechanistic model evaluated the impact of different gmin estimations on the time to hydraulic failure (THF). Residual conductance is not steady and decreases continuously at varying rates across species during the entire dehydration process, even after correcting for leaf shrinkage and vapor pressure deficit shifts. Different estimations of gmin had a significant impact on the THF predicted by the model, especially for drought‐resistant species. We demonstrate that residual conductance is variable during dehydration, and thus, it is important to use physiological or water status boundaries for its estimation in order to determine distinct gmin values of water loss. We describe an accurate, repeatable and open‐source methodology to estimate gmin. Such methodology could enhance models of plant mortality under drought. Résumé L’étude de la perte d’eau des feuilles après la fermeture des stomates est essentielle pour comprendre les effets d’une sécheresse prolongée sur la végétation. Il est donc important de quantifier précisément ces pertes pour améliorer les modèles de mortalité des plantes induite par la sécheresse. Nous avons mesuré en continu la perte d’eau de feuilles détachées pendant la déshydratation chez neuf espèces d’angiospermes et calculé la conductance foliaire minimale (gmin) à différents seuils de potentiel hydrique correspondants aux seuils de pertes de fonctions physiologiques, allant du point de perte de turgescence à la défaillance hydraulique. Un modèle mécaniste a évalué l’impact des différentes estimations de gmin sur le temps de défaillance hydraulique (THF). La conductance résiduelle n’est pas stable et diminue continuellement à des rythmes variés d’une espèce à l’autre pendant toute la durée du processus de déshydratation, même après correction du rétrécissement des feuille. La prise en compte des variations de l’estimations de gmin a un impact significatif sur le THF prédit par le modèle, en particulier pour les espèces résistantes à la sécheresse. Nous démontrons que la conductance résiduelle est variable au cours de la déshydratation, et qu’il est donc important de préciser pour quelles limites physiologiques ou état hydrique l’estimation de gmin a été effectué. Nous décrivons une méthodologie précise, reproductible et open‐source pour cette estimation. Une telle méthodologie pourrait améliorer les modèles de mortalité des plantes lors de sécheresse. |
| Author | Delzon, Sylvain Forget, Guillaume Burlett, Régis Parise, Camille Trueba, Santiago Martin‐StPaul, Nicolas K. Bouteiller, Xavier Paul Torres‐Ruiz, José M. Cochard, Hervé |
| AuthorAffiliation | 2 AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD Montpellier 34398 France 3 Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC) Seville 41012 Spain 4 INRAE, UEFP Avignon 84914 France 5 INRAE, PIAF, Université Clermont Auvergne Clermont‐Ferrand 63000 France 1 INRAE, UMR BIOGECO, Université de Bordeaux Pessac 33615 France |
| AuthorAffiliation_xml | – name: 2 AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD Montpellier 34398 France – name: 1 INRAE, UMR BIOGECO, Université de Bordeaux Pessac 33615 France – name: 5 INRAE, PIAF, Université Clermont Auvergne Clermont‐Ferrand 63000 France – name: 3 Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC) Seville 41012 Spain – name: 4 INRAE, UEFP Avignon 84914 France |
| Author_xml | – sequence: 1 givenname: Régis orcidid: 0000-0001-8289-5757 surname: Burlett fullname: Burlett, Régis email: regis.burlett@u-bordeaux.fr organization: INRAE, UMR BIOGECO, Université de Bordeaux – sequence: 2 givenname: Santiago orcidid: 0000-0001-8218-957X surname: Trueba fullname: Trueba, Santiago organization: AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD – sequence: 3 givenname: Xavier Paul orcidid: 0000-0001-8621-383X surname: Bouteiller fullname: Bouteiller, Xavier Paul organization: INRAE, UMR BIOGECO, Université de Bordeaux – sequence: 4 givenname: Guillaume orcidid: 0009-0000-4778-3194 surname: Forget fullname: Forget, Guillaume organization: INRAE, UMR BIOGECO, Université de Bordeaux – sequence: 5 givenname: José M. orcidid: 0000-0003-1367-7056 surname: Torres‐Ruiz fullname: Torres‐Ruiz, José M. organization: Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC) – sequence: 6 givenname: Nicolas K. orcidid: 0000-0001-7574-0108 surname: Martin‐StPaul fullname: Martin‐StPaul, Nicolas K. organization: INRAE, UEFP – sequence: 7 givenname: Camille orcidid: 0000-0001-5222-4928 surname: Parise fullname: Parise, Camille organization: INRAE, UMR BIOGECO, Université de Bordeaux – sequence: 8 givenname: Hervé orcidid: 0000-0002-2727-7072 surname: Cochard fullname: Cochard, Hervé organization: INRAE, PIAF, Université Clermont Auvergne – sequence: 9 givenname: Sylvain orcidid: 0000-0003-3442-1711 surname: Delzon fullname: Delzon, Sylvain organization: INRAE, UMR BIOGECO, Université de Bordeaux |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40059431$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-04986793$$DView record in HAL |
| BookMark | eNqFkk2PFCEQholZ486uHvwDhsSLHnoXaJoGL2azUcdk_Dho4o3U0PQMm25o6abN_HsZZ111EpULoXjqpd6iztCJD94i9JiSC5rXpR-2FzUhFbuHFpQLVUha1idoQQiTheDiyyk6G8cbQoiqBHuATnmGFS_pAsE7512fetxZaLEJvklmAm8sblJ0foObGNJmO73AyUeYbdftg24a8QzRwdp1btph8A12_QBmwsHjoQM_4THF2c3QPUT3W-hG--h2P0efX7_6dL0sVh_evL2-WhWmoiUrbG24aAhIRWWtDLT5YIFUlJZ2vQbGBeVNaVglats2rajKChphVF1VDePQlufo5UF3SOveNsb6KUKnh-h6iDsdwOk_b7zb6k2YNaVKslqVWeH5QWF7lLe8Wul9jHAlRSZnmtlnt6_F8DXZcdK9G01uD3gb0qhLRgSjQkr2f5TW2ZQStMro0yP0JqToc9syJWUulBOeqSe_O70r9eev_jJiYhjHaNs7hBK9nxidJ0b_mJjMXh6xxk0wubBvkuv-lfHNdXb3d2n9_uPykPEdbFTR_g |
| CitedBy_id | crossref_primary_10_1093_treephys_tpaf090 |
| Cites_doi | 10.1093/oxfordjournals.aob.a089398 10.5194/gmd-15-5593-2022 10.1093/treephys/tpz110 10.1007/s13595-021-01067-y 10.1016/B978-0-12-374143-1.00002-8 10.1016/S1360-1385(96)90007-2 10.1111/nph.19463 10.1093/jxb/erz474 10.1038/s41598-019-56847-4 10.1093/treephys/tpt030 10.3389/fpls.2017.00054 10.1002/jgrg.20112 10.1111/nph.15395 10.1007/s13595-020-00944-2 10.1111/nph.15779 10.1111/pce.13750 10.1111/j.1365-3040.1993.tb00511.x 10.1111/nph.16571 10.1111/ele.12851 10.1093/jxb/23.1.267 10.1111/nph.12798 10.1111/nph.18578 10.1007/978-94-009-2221-1_8 10.1007/978-94-010-9013-1_9 10.1111/j.1365-3040.1981.tb02111.x 10.1111/nph.19898 10.1104/pp.113.221424 10.1104/pp.114.1.185 10.1111/j.1365-3040.1988.tb01774.x 10.1073/pnas.1010070108 10.1186/s13595-022-01124-0 10.1111/nph.16941 10.1104/pp.105.069724 10.1073/pnas.95.25.14839 10.1093/conphys/coz046 10.1007/s13595-018-0768-9 10.1093/jxb/49.Special_Issue.407 10.1111/pce.12688 10.1093/jxb/erad352 10.1038/s41467-022-29289-2 10.1111/plb.13384 10.1111/j.1469-8137.2006.01826.x 10.1111/nph.15886 10.1093/plphys/kiac034 10.1046/j.1365-3040.2002.00863.x 10.1093/jxb/42.2.167 10.1073/pnas.2025251118 10.1111/nph.15079 10.1111/pce.14274 10.1038/srep23418 10.1038/nature11688 10.1111/nph.17588 10.1046/j.1469-8137.2003.00736.x |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). © 2025 New Phytologist Foundation. 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation. 2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution - NonCommercial |
| Copyright_xml | – notice: 2025 The Author(s). © 2025 New Phytologist Foundation. – notice: 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation. – notice: 2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution - NonCommercial |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC VOOES 5PM |
| DOI | 10.1111/nph.70052 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany Environmental Sciences |
| EISSN | 1469-8137 |
| EndPage | 1014 |
| ExternalDocumentID | PMC11982793 oai:HAL:hal-04986793v1 40059431 10_1111_nph_70052 NPH70052 |
| Genre | researchArticle Journal Article |
| GrantInformation_xml | – fundername: Agence Nationale de la Recherche funderid: ANR‐10‐LABX‐45 – fundername: Université de Bordeaux funderid: IDEX Investments for the Future program/GPR B – fundername: Université de Bordeaux grantid: IDEX Investments for the Future program/GPR B – fundername: Agence Nationale de la Recherche grantid: ANR-10-LABX-45 |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX ABGDZ ABUFD ADXHL AEFGJ AEYWJ AGXDD AGYGG AIDQK AIDYY CITATION O8X CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c5132-e7c46d0a891879caf6d0ea05113ebba24614d3c2567efdf6535ad6c9755d24af3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001440270700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-646X 1469-8137 |
| IngestDate | Tue Nov 04 02:03:47 EST 2025 Sat Nov 29 15:02:25 EST 2025 Fri Sep 05 16:06:49 EDT 2025 Sun Nov 09 14:21:53 EST 2025 Sat Aug 23 12:41:53 EDT 2025 Sun Apr 13 01:30:53 EDT 2025 Tue Nov 18 21:50:50 EST 2025 Sat Nov 29 07:55:44 EST 2025 Thu Apr 10 11:07:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | turgor loss point drought stress water potential relative water content cuticular conductance stomatal closure Drought stress Stomatal closure Water potential Cuticular conductance Turgor loss point Relative water content |
| Language | English |
| License | Attribution-NonCommercial 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation. Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5132-e7c46d0a891879caf6d0ea05113ebba24614d3c2567efdf6535ad6c9755d24af3 |
| Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0000-4778-3194 0000-0001-8289-5757 0000-0003-1367-7056 0000-0001-7574-0108 0000-0001-5222-4928 0000-0002-2727-7072 0000-0003-3442-1711 0000-0001-8218-957X 0000-0001-8621-383X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.70052 |
| PMID | 40059431 |
| PQID | 3188198404 |
| PQPubID | 2026848 |
| PageCount | 14 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11982793 hal_primary_oai_HAL_hal_04986793v1 proquest_miscellaneous_3206216882 proquest_miscellaneous_3175679615 proquest_journals_3188198404 pubmed_primary_40059431 crossref_primary_10_1111_nph_70052 crossref_citationtrail_10_1111_nph_70052 wiley_primary_10_1111_nph_70052_NPH70052 |
| PublicationCentury | 2000 |
| PublicationDate | May 2025 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Lancaster – name: Hoboken |
| PublicationTitle | The New phytologist |
| PublicationTitleAlternate | New Phytol |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc Wiley John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley – name: John Wiley and Sons Inc |
| References | 1998; 49 1997; 114 2023; 74 2017; 8 2022b; 4 2022; 24 2020; 10 2006; 171 2003; 158 2016; 39 2016; 36 2022a; 15 2012; 491 2021; 78 2000 2018; 218 1991; 42 2013; 118 2021; 118 2022; 79 1996; 1 2020; 43 1998; 95 2018; 75 2014; 164 2014; 203 1989 2019; 7 2022; 233 2018; 221 2017; 20 1912; 26 2010 2021; 229 1981; 4 2022; 45 2009 1988; 11 2019; 223 2024; 241 2020; 227 2024; 244 2020; 77 1972; 23 1956 2022; 189 2002; 25 2016; 6 2011; 108 2019; 40 1993; 16 2013; 33 2022 2020; 71 2006; 140 2022; 13 2023; 237 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 R Core Team (e_1_2_9_42_1) 2022 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 Ruffault J (e_1_2_9_45_1) 2022; 4 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Stålfelt MG (e_1_2_9_54_1) 1956 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 Li S (e_1_2_9_31_1) 2016; 36 |
| References_xml | – volume: 25 start-page: 815 year: 2002 end-page: 819 article-title: A technique for measuring xylem hydraulic conductance under high negative pressures publication-title: Plant, Cell & Environment – volume: 223 start-page: 134 year: 2019 end-page: 149 article-title: Thresholds for leaf damage due to dehydration: declines of hydraulic function, stomatal conductance and cellular integrity precede those for photochemistry publication-title: New Phytologist – year: 1956 – volume: 95 start-page: 14839 year: 1998 end-page: 14842 article-title: Drought‐induced shift of a forest–woodland ecotone: Rapid landscape response to climate variation publication-title: Proceedings of the National Academy of Sciences, USA – volume: 24 start-page: 1208 year: 2022 end-page: 1223 article-title: Stem and leaf xylem of angiosperm trees experiences minimal embolism in temperate forests during two consecutive summers with moderate drought publication-title: Plant Biology – volume: 233 start-page: 156 year: 2022 end-page: 168 article-title: Cuticular conductance of adaxial and abaxial leaf surfaces and its relation to minimum leaf surface conductance publication-title: New Phytologist – volume: 15 start-page: 5593 year: 2022a end-page: 5626 article-title: S E ‐E v.2.0: a trait‐based plant hydraulics model for simulations of plant water status and drought‐induced mortality at the ecosystem level publication-title: Geoscientific Model Development – volume: 49 start-page: 407 year: 1998 end-page: 417 article-title: Stomatal heterogeneity publication-title: Journal of Experimental Botany – start-page: 161 year: 2000 end-page: 183 – volume: 229 start-page: 1415 year: 2021 end-page: 1430 article-title: Where do leaf water leaks come from? Trade‐offs underlying the variability in minimum conductance across tropical savanna species with contrasting growth strategies publication-title: New Phytologist – volume: 140 start-page: 176 year: 2006 end-page: 183 article-title: Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco publication-title: Plant Physiology – volume: 36 start-page: 179 year: 2016 end-page: 192 article-title: Leaf gas exchange performance and the lethal water potential of five European species during drought publication-title: Tree Physiology – volume: 71 start-page: 1151 year: 2020 end-page: 1159 article-title: Xylem embolism in leaves does not occur with open stomata: evidence from direct observations using the optical visualization technique publication-title: Journal of Experimental Botany – volume: 241 start-page: 984 year: 2024 end-page: 999 article-title: Plant hydraulics at the heart of plant, crops and ecosystem functions in the face of climate change publication-title: New Phytologist – volume: 33 start-page: 672 year: 2013 end-page: 683 article-title: Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees publication-title: Tree Physiology – volume: 79 year: 2022 article-title: Measuring xylem hydraulic vulnerability for long‐vessel species: an improved methodology with the flow centrifugation technique publication-title: Annals of Forest Science – volume: 171 start-page: 469 year: 2006 end-page: 499 article-title: The effects of stress on plant cuticular waxes publication-title: New Phytologist – volume: 108 start-page: 1474 year: 2011 end-page: 1478 article-title: Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change‐type drought publication-title: Proceedings of the National Academy of Sciences, USA – volume: 118 year: 2021 article-title: Rapid hydraulic collapse as cause of drought‐induced mortality in conifers publication-title: Proceedings of the National Academy of Sciences, USA – volume: 7 start-page: 1 year: 2019 end-page: 7 article-title: Measuring the pulse of trees; using the vascular system to predict tree mortality in the 21st century publication-title: Conservation Physiology – volume: 218 start-page: 1025 year: 2018 end-page: 1035 article-title: Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots publication-title: New Phytologist – volume: 114 start-page: 185 year: 1997 end-page: 191 article-title: CO and water vapor exchange across leaf cuticle (epidermis) at various water potentials publication-title: Plant Physiology – volume: 13 start-page: 1761 year: 2022 article-title: Global field observations of tree die‐off reveal hotter‐drought fingerprint for Earth's forests publication-title: Nature Communications – volume: 20 start-page: 1437 year: 2017 end-page: 1447 article-title: Plant resistance to drought depends on timely stomatal closure publication-title: Ecology Letters – volume: 75 start-page: 88 year: 2018 article-title: An inconvenient truth about xylem resistance to embolism in the model species for refilling L publication-title: Annals of Forest Science – volume: 189 start-page: 204 year: 2022 end-page: 214 article-title: Hydraulic vulnerability segmentation in compound‐leaved trees: evidence from an embolism visualization technique publication-title: Plant Physiology – volume: 227 start-page: 698 year: 2020 end-page: 713 article-title: Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress publication-title: New Phytologist – year: 2022 – volume: 164 start-page: 1772 year: 2014 end-page: 1788 article-title: Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance publication-title: Plant Physiology – volume: 74 start-page: 6847 year: 2023 end-page: 6859 article-title: Drought survival in conifer species is related to the time required to cross the stomatal safety margin publication-title: Journal of Experimental Botany – volume: 8 year: 2017 article-title: Effect of leaf water potential on internal humidity and CO dissolution: reverse transpiration and improved water use efficiency under negative pressure publication-title: Frontiers in Plant Science – volume: 203 start-page: 355 year: 2014 end-page: 358 article-title: Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin publication-title: New Phytologist – volume: 244 start-page: 464 year: 2024 end-page: 476 article-title: Evidence for within‐species transition between drought response strategies in publication-title: New Phytologist – volume: 43 start-page: 1584 year: 2020 end-page: 1594 article-title: The DroughtBox: a new tool for phenotyping residual branch conductance and its temperature dependence during drought publication-title: Plant, Cell & Environment – volume: 4 start-page: 349 year: 1981 end-page: 354 article-title: Water permeability of plant cuticular membranes: the effects of humidity and temperature on the permeability of non‐isolated cuticles of onion bulb scales publication-title: Plant, Cell & Environment – volume: 40 start-page: 827 year: 2019 end-page: 840 article-title: Cuticular wax coverage and its transpiration barrier properties in L. leaves: does the environment matter? publication-title: Tree Physiology – volume: 26 start-page: 409 year: 1912 end-page: 442 article-title: Transpiration in succulent plants publication-title: Annals of Botany – volume: 221 start-page: 693 year: 2018 end-page: 705 article-title: On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls publication-title: New Phytologist – volume: 39 start-page: 1886 year: 2016 end-page: 1894 article-title: Grapevine petioles are more sensitive to drought induced embolism than stems: evidence from MRI and microcomputed tomography observations of hydraulic vulnerability segmentation publication-title: Plant, Cell & Environment – volume: 223 start-page: 1296 year: 2019 end-page: 1306 article-title: No local adaptation in leaf or stem xylem vulnerability to embolism, but consistent vulnerability segmentation in a North American oak publication-title: New Phytologist – volume: 6 year: 2016 article-title: Impact of the representation of stomatal conductance on model projections of heatwave intensity publication-title: Scientific Reports – volume: 42 start-page: 167 year: 1991 end-page: 171 article-title: Cell membrane stability and leaf surface wax content as affected by increasing water deficits in maize publication-title: Journal of Experimental Botany – volume: 45 start-page: 1157 year: 2022 end-page: 1171 article-title: Increased cuticular wax deposition does not change residual foliar transpiration publication-title: Plant, Cell & Environment – volume: 4 start-page: 1318 year: 2022b end-page: 1322 article-title: S E ‐E ‐FMC: mechanistic modelling of fuel moisture content (FMC) at leaf and canopy scale under extreme drought publication-title: Journal of Advances in Forest Fire Research – year: 2010 – volume: 237 start-page: 793 year: 2023 end-page: 806 article-title: On the path from xylem hydraulic failure to downstream cell death publication-title: New Phytologist – start-page: 44 year: 2009 end-page: 99 – volume: 23 start-page: 267 year: 1972 end-page: 282 article-title: The measurement of the turgor pressure and the water relations of plants by the pressure‐bomb technique publication-title: Journal of Experimental Botany – volume: 10 start-page: 1 year: 2020 end-page: 12 article-title: Drought stress modify cuticle of tender tea leaf and mature leaf for transpiration barrier enhancement through common and distinct modes publication-title: Scientific Reports – volume: 11 start-page: 35 year: 1988 end-page: 40 article-title: A method for measuring hydraulic conductivity and embolism in xylem publication-title: Plant, Cell & Environment – start-page: 137 year: 1989 end-page: 160 – volume: 78 start-page: 55 year: 2021 article-title: SurEau: a mechanistic model of plant water relations under extreme drought publication-title: Annals of Forest Science – volume: 77 start-page: 1 year: 2020 end-page: 12 article-title: Lack of vulnerability segmentation in four angiosperm tree species: evidence from direct X-ray microtomography observation publication-title: Annals of Forest Science – volume: 16 start-page: 879 year: 1993 end-page: 882 article-title: Drought‐induced leaf shedding in walnut: evidence for vulnerability segmentation publication-title: Plant, Cell & Environment – volume: 491 start-page: 752 year: 2012 end-page: 755 article-title: Global convergence in the vulnerability of forests to drought publication-title: Nature – volume: 118 start-page: 1322 year: 2013 end-page: 1333 article-title: The implications of minimum stomatal conductance on modeling water flux in forest canopies publication-title: Journal of Geophysical Research: Biogeosciences – volume: 1 start-page: 125 year: 1996 end-page: 129 article-title: Signalling across the divide: a wider perspective of cuticular structure‐function relationships publication-title: Trends in Plant Science – volume: 158 start-page: 295 year: 2003 end-page: 303 article-title: Changes in leaf hydraulic conductance during leaf shedding in seasonally dry tropical forest publication-title: New Phytologist – ident: e_1_2_9_19_1 doi: 10.1093/oxfordjournals.aob.a089398 – ident: e_1_2_9_44_1 doi: 10.5194/gmd-15-5593-2022 – ident: e_1_2_9_10_1 doi: 10.1093/treephys/tpz110 – ident: e_1_2_9_17_1 doi: 10.1007/s13595-021-01067-y – ident: e_1_2_9_38_1 doi: 10.1016/B978-0-12-374143-1.00002-8 – volume: 36 start-page: 179 year: 2016 ident: e_1_2_9_31_1 article-title: Leaf gas exchange performance and the lethal water potential of five European species during drought publication-title: Tree Physiology – volume-title: Pflanze und Wasser/water relations of plants. Handbuch der Pflanzenphysiologie/encyclopedia of plant physiology year: 1956 ident: e_1_2_9_54_1 – ident: e_1_2_9_27_1 doi: 10.1016/S1360-1385(96)90007-2 – ident: e_1_2_9_55_1 doi: 10.1111/nph.19463 – ident: e_1_2_9_18_1 doi: 10.1093/jxb/erz474 – ident: e_1_2_9_47_1 – ident: e_1_2_9_14_1 doi: 10.1038/s41598-019-56847-4 – ident: e_1_2_9_59_1 doi: 10.1093/treephys/tpt030 – ident: e_1_2_9_60_1 doi: 10.3389/fpls.2017.00054 – ident: e_1_2_9_5_1 doi: 10.1002/jgrg.20112 – ident: e_1_2_9_21_1 doi: 10.1111/nph.15395 – ident: e_1_2_9_32_1 doi: 10.1007/s13595-020-00944-2 – ident: e_1_2_9_56_1 doi: 10.1111/nph.15779 – ident: e_1_2_9_6_1 doi: 10.1111/pce.13750 – ident: e_1_2_9_57_1 doi: 10.1111/j.1365-3040.1993.tb00511.x – ident: e_1_2_9_30_1 doi: 10.1111/nph.16571 – ident: e_1_2_9_36_1 doi: 10.1111/ele.12851 – ident: e_1_2_9_58_1 doi: 10.1093/jxb/23.1.267 – ident: e_1_2_9_46_1 – ident: e_1_2_9_20_1 doi: 10.1111/nph.12798 – ident: e_1_2_9_34_1 doi: 10.1111/nph.18578 – ident: e_1_2_9_39_1 doi: 10.1007/978-94-009-2221-1_8 – ident: e_1_2_9_28_1 doi: 10.1007/978-94-010-9013-1_9 – ident: e_1_2_9_48_1 doi: 10.1111/j.1365-3040.1981.tb02111.x – ident: e_1_2_9_4_1 doi: 10.1111/nph.19898 – ident: e_1_2_9_49_1 doi: 10.1104/pp.113.221424 – ident: e_1_2_9_7_1 doi: 10.1104/pp.114.1.185 – ident: e_1_2_9_53_1 doi: 10.1111/j.1365-3040.1988.tb01774.x – ident: e_1_2_9_13_1 doi: 10.1073/pnas.1010070108 – ident: e_1_2_9_11_1 doi: 10.1186/s13595-022-01124-0 – ident: e_1_2_9_33_1 doi: 10.1111/nph.16941 – ident: e_1_2_9_12_1 doi: 10.1104/pp.105.069724 – volume-title: R: a language and environment for statistical computing year: 2022 ident: e_1_2_9_42_1 – ident: e_1_2_9_2_1 doi: 10.1073/pnas.95.25.14839 – ident: e_1_2_9_8_1 doi: 10.1093/conphys/coz046 – ident: e_1_2_9_29_1 doi: 10.1007/s13595-018-0768-9 – ident: e_1_2_9_37_1 doi: 10.1093/jxb/49.Special_Issue.407 – ident: e_1_2_9_25_1 doi: 10.1111/pce.12688 – ident: e_1_2_9_40_1 doi: 10.1093/jxb/erad352 – ident: e_1_2_9_24_1 doi: 10.1038/s41467-022-29289-2 – ident: e_1_2_9_23_1 doi: 10.1111/plb.13384 – ident: e_1_2_9_50_1 doi: 10.1111/j.1469-8137.2006.01826.x – ident: e_1_2_9_51_1 doi: 10.1111/nph.15886 – ident: e_1_2_9_52_1 doi: 10.1093/plphys/kiac034 – ident: e_1_2_9_16_1 doi: 10.1046/j.1365-3040.2002.00863.x – ident: e_1_2_9_41_1 doi: 10.1093/jxb/42.2.167 – ident: e_1_2_9_3_1 doi: 10.1073/pnas.2025251118 – ident: e_1_2_9_43_1 doi: 10.1111/nph.15079 – volume: 4 start-page: 1318 year: 2022 ident: e_1_2_9_45_1 article-title: SurEau‐Ecos‐FMC: mechanistic modelling of fuel moisture content (FMC) at leaf and canopy scale under extreme drought publication-title: Journal of Advances in Forest Fire Research – ident: e_1_2_9_22_1 doi: 10.1111/pce.14274 – ident: e_1_2_9_26_1 doi: 10.1038/srep23418 – ident: e_1_2_9_15_1 doi: 10.1038/nature11688 – ident: e_1_2_9_35_1 doi: 10.1111/nph.17588 – ident: e_1_2_9_9_1 doi: 10.1046/j.1469-8137.2003.00736.x |
| SSID | ssj0009562 |
| Score | 2.485154 |
| Snippet | Summary
Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately... Leaf water loss after stomatal closure is key to understanding the effects of prolonged drought on vegetation. It is therefore important to accurately quantify... |
| SourceID | pubmedcentral hal proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1001 |
| SubjectTerms | Angiospermae Conductance cuticular conductance Dehydration Drought drought stress drought tolerance Droughts Environmental Sciences Expressed sequence tags leaf conductance Leaves Magnoliopsida - physiology mechanistic models Models, Biological Mortality Physiological functions Physiology Plant Leaves - physiology Plant Stomata - physiology Plant Transpiration - physiology Plants Plants (botany) relative water content shrinkage species Stomata stomatal closure stomatal movement Turgor turgor loss point Vapor pressure vapor pressure deficit Vapour pressure vegetation Water Water - physiology Water loss Water potential |
| Title | Minimum leaf conductance during drought: unravelling its variability and impact on plant survival |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.70052 https://www.ncbi.nlm.nih.gov/pubmed/40059431 https://www.proquest.com/docview/3188198404 https://www.proquest.com/docview/3175679615 https://www.proquest.com/docview/3206216882 https://hal.inrae.fr/hal-04986793 https://pubmed.ncbi.nlm.nih.gov/PMC11982793 |
| Volume | 246 |
| WOSCitedRecordID | wos001440270700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1469-8137 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009562 issn: 0028-646X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7t68CF5bkUlpVBHLgENYljJ8tpeVQ9lKpCLOotcuxEjdR1q01Taf89M85DrRYQEhcriSey45mxZxzPNwDvCpmITBrumUAmHjeh9hR6Qp6v0RmJfcWli_D-OZHTaTyfJ7MD-NjFwjT4EP2GG2mGm69JwVVW7Si5XS8-SNrVPIRj3w9jytsQ8NkO4q4IOghmwcW8hRWiYzz9q3uL0eGCjkLetzPvH5fcNWPdOjQ6_a8veAQPW_OTXTXy8hgOcvsETj6t0ES8ewrqW2nLm_qGLXNVMPSUCQyWxII10YzMuKQ-m0tWW0pb5PC8Wbmp2BZd7gbx-44pa1gTfMlWlq2XyDtW1TgloVA_g-vR1x-fx16bg8HTETqqXi41F2ao4oTSkmtV4E2uUJP9MM8yRWh0xGA0nGRemEJEYaSM0ImMIhNwVYTP4ciubP4CWFRwXw-HRmDJE4O2XpHFQaIzyluE08wA3nfMSHULUE55MpZp56jggKVuwAbwtiddN6gcvyVCjvb1hKM9vpqk9AzbJ6DBcIuNnncMT1vtrVKc59BQQteXD-BNX416Rz9TlM1XNdHIiPbg_OgvNMFQBL5AJ2YAZ40M9d3hDiknxA7Ee9K119_9GlsuHP63j31DzQpxwJx4_XkI0uls7C5e_jvpK3gQUI5jd6jzHI42t3X-Gk70dlNWtxdOx7CU8_gCjr98H11PfgGm_ivS |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7tLivBhfejsIBBHLgENYljJ4jLglgV0a16WFBvkWM7aqSuW22bSvvvmXEearWAkLhESTxRnHl5xrG_AXhXykwU0vDARDILuIl1oDATCkKNyUgaKi79Du-fYzmZpLNZNj2AT91emAYfop9wI8vw_poMnCakd6zcreYfJE1rHsItjqMMaXnEpzuQuyLqMJgFF7MWV4jW8fSP7o1Gh3NaC3kz0Ly5XnI3jvUD0dm9__uE-3C3DUDZaaMxD-DAuodw_HmJQeL1I1Dnlasu60u2sKpkmCsTHCwpBmv2MzLjy_psPrLaUeEij-jNqs2abTHpbjC_r5lyhjXbL9nSsdUCpcfWNTolVOvH8OPs68WXUdBWYQh0gqlqYKXmwgxVmlFhcq1KvLAKbTmMbVEowqMjEWPoJG1pSpHEiTJCZzJJTMRVGT-BI7d09hmwpOShHg6NwCPPDEZ7ZZFGmS6ochE6mgG876SR6xainCplLPIuVUGG5Z5hA3jbk64aXI7fEqFI-3ZC0h6djnO6h-8nqMF4iy896SSet_a7ztHTYaiEyS8fwJu-GS2PfqcoZ5c10ciEZuHC5C800VBEocA0ZgBPGyXqu8M9Vk6MHUj31Guvv_strpp7BPAQ-4a2FSPDvH79mQX5ZDryJ8__nfQ13B5dnI_z8bfJ9xdwJ6KKx36J5wkcba5q-xKO9XZTra9eeYP7BQD0LTU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9t3YR44fujMMAgHnjJ1CSOnSBeBqMqolQVYqhvkWMnaqTOrdam0v577pwPtRogJF6iJL4oju_OvnPufgfwtpCJyKThnglk4nETak-hJ-T5Gp2R2Fdcugzvn2M5mcSzWTI9gA9tLkyND9FtuJFmuPmaFDxfmWJHy-1qfippW_MQjjgVkenB0fn34cV4B3RXBC0Ks-Bi1iALUSRP9_DeenQ4p2jIm6bmzYjJXUvWLUXDu__3EffgTmOCsrNaZu7DQW4fwPHHJZqJ1w9BfStteVldskWuCobeMgHCkmiwOqORGVfYZ_OeVZZKFzlMb1Zu1myLbneN-n3NlDWsTsBkS8tWC-QfW1c4LaFgP4KL4ecfn0ZeU4fB0xE6q14uNRdmoOKESpNrVeBFrlCb_TDPMkWIdMRkNJ5kXphCRGGkjNCJjCITcFWEj6FnlzZ_CiwquK8HAyPwyBOD9l6RxUGiM6pdhFNNH9613Eh1A1JOtTIWaeus4IClbsD68KYjXdXIHL8lQpZ27YSlPTobp3QP309gg-EWX3rScjxtNHid4lyHxhK6v7wPr7tm1D36oaJsvqyIRka0D-dHf6EJBiLwBToyfXhSC1HXHe7QckLsQLwnXnv93W-x5dxhgPvYN9SuEAfMydefhyCdTEfu5Nm_k76CW9PzYTr-Mvn6HG4HVPLYxXieQG9zVeUv4FhvN-X66mWjcb8Av5suSw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimum+leaf+conductance+during+drought%3A+unravelling+its+variability+and+impact+on+plant+survival&rft.jtitle=The+New+phytologist&rft.au=Burlett%2C+R%C3%A9gis&rft.au=Trueba%2C+Santiago&rft.au=Bouteiller%2C+Xavier+Paul&rft.au=Forget%2C+Guillaume&rft.date=2025-05-01&rft.eissn=1469-8137&rft.volume=246&rft.issue=3&rft.spage=1001&rft_id=info:doi/10.1111%2Fnph.70052&rft_id=info%3Apmid%2F40059431&rft.externalDocID=40059431 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |