DNA origami-based shape IDs for single-molecule nanomechanical genotyping

Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorop...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature communications Ročník 8; číslo 1; s. 14738 - 7
Hlavní autoři: Zhang, Honglu, Chao, Jie, Pan, Dun, Liu, Huajie, Qiang, Yu, Liu, Ke, Cui, Chengjun, Chen, Jianhua, Huang, Qing, Hu, Jun, Wang, Lianhui, Huang, Wei, Shi, Yongyong, Fan, Chunhai
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 06.04.2017
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2041-1723, 2041-1723
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ∼10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level. Atomic force microscopy allows for the imaging of molecules at a nanometre resolution. Here the authors combine AFM with self-assembling DNA origami structures to detect single-nucleotide polymorphisms and determine haplotypes.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms14738