Fast prototype selection algorithm based on adjacent neighbourhood and boundary approximation

The unceasing increase of data quantity severely limits the wide application of mature classification algorithms due to the unacceptable execution time and the insufficient memory. How to fast incrementally obtain high decision reference set and adapt to incremental data environment is urgently need...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 12; číslo 1; s. 20108 - 15
Hlavní autori: Li, Juan, Dai, Cai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 22.11.2022
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The unceasing increase of data quantity severely limits the wide application of mature classification algorithms due to the unacceptable execution time and the insufficient memory. How to fast incrementally obtain high decision reference set and adapt to incremental data environment is urgently needed in incremental environments, large dataset, etc. This paper proposes a novel prototype selection algorithm by integrating the strategies between condensing method and editing method. To an unlearned pattern, this algorithm extends the references scope from its single nearest neighbour to its k nearest neighbourhood that can expand the judgment information to obtain its detailed neighbour relationship. Then a pattern was determined whether it is a prototype using its neighbour relationship and classification boundary asymptotically strategy. To maintain the higher reference set, this algorithm periodically updates those prototypes that locates in the non-boundary zone or is long-time unlearned. The empirical study shows that this algorithm obtains the smaller and higher boundary prototypes without decreasing classification accuracy and reduction rate than the compared algorithms.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-23036-9