DMRG-CASPT2 study of the longitudinal static second hyperpolarizability of all-trans polyenes

We have implemented internally contracted complete active space second order perturbation theory (CASPT2) with the density matrix renormalization group (DMRG) as active space solver [Y. Kurashige and T. Yanai, J. Chem. Phys. 135, 094104 (2011)]. Internally contracted CASPT2 requires to contract the...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics Vol. 145; no. 5; p. 054120
Main Authors: Wouters, Sebastian, Van Speybroeck, Veronique, Van Neck, Dimitri
Format: Journal Article
Language:English
Published: United States 07.08.2016
ISSN:1089-7690
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have implemented internally contracted complete active space second order perturbation theory (CASPT2) with the density matrix renormalization group (DMRG) as active space solver [Y. Kurashige and T. Yanai, J. Chem. Phys. 135, 094104 (2011)]. Internally contracted CASPT2 requires to contract the generalized Fock matrix with the 4-particle reduced density matrix (4-RDM) of the reference wavefunction. The required 4-RDM elements can be obtained from 3-particle reduced density matrices (3-RDM) of different wavefunctions, formed by symmetry-conserving single-particle excitations op top of the reference wavefunction. In our spin-adapted DMRG code chemps2 https://github.com/sebwouters/chemps2, we decompose these excited wavefunctions as spin-adapted matrix product states and calculate their 3-RDM in order to obtain the required contraction of the generalized Fock matrix with the 4-RDM of the reference wavefunction. In this work, we study the longitudinal static second hyperpolarizability of all-trans polyenes C2nH2n+2 [n = 4-12] in the cc-pVDZ basis set. DMRG-SCF and DMRG-CASPT2 yield substantially lower values and scaling with system size compared to RHF and MP2, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1089-7690
DOI:10.1063/1.4959817