An NSGA-II based multi-objective optimization for combined gas and electricity network expansion planning

•Developed a multi-objective model for the combined natural gas network and electricity network.•Taken into account the uncertainty and correlations of wind power in the proposed model.•Presented an improved point-estimation method to solve the combined optimal power and natural gas load flow. With...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 167; pp. 280 - 293
Main Authors: Hu, Yuan, Bie, Zhaohong, Ding, Tao, Lin, Yanling
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.04.2016
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Developed a multi-objective model for the combined natural gas network and electricity network.•Taken into account the uncertainty and correlations of wind power in the proposed model.•Presented an improved point-estimation method to solve the combined optimal power and natural gas load flow. With the increasing proportion of natural gas in power generation, natural gas network and electricity network are closely coupled. Therefore, planning of any individual system regardless of such interdependence will increase the total cost of the whole combined systems. Therefore, a multi-objective optimization model for the combined gas and electricity network planning is presented in this work. To be specific, the objectives of the proposed model are to minimize both investment cost and production cost of the combined system while taking into account the N−1 network security criterion. Moreover, the stochastic nature of wind power generation is addressed in the proposed model. Consequently, it leads to a mixed integer non-linear, multi-objective, stochastic programming problem. To solve this complex model, the Elitist Non-dominated Sorting Genetic Algorithm II (NSGA-II) is employed to capture the optimal Pareto front, wherein the Primal–Dual Interior-Point (PDIP) method combined with the point-estimate method is adopted to evaluate the objective functions. In addition, decision makers can use a fuzzy decision making approach based on their preference to select the final optimal solution from the optimal Pareto front. The effectiveness of the proposed model and method are validated on a modified IEEE 24-bus electricity network integrated with a 15-node natural gas system as well as a real-world system of Hainan province.
AbstractList With the increasing proportion of natural gas in power generation, natural gas network and electricity network are closely coupled. Therefore, planning of any individual system regardless of such interdependence will increase the total cost of the whole combined systems. Therefore, a multi-objective optimization model for the combined gas and electricity network planning is presented in this work. To be specific, the objectives of the proposed model are to minimize both investment cost and production cost of the combined system while taking into account the N−1 network security criterion. Moreover, the stochastic nature of wind power generation is addressed in the proposed model. Consequently, it leads to a mixed integer non-linear, multi-objective, stochastic programming problem. To solve this complex model, the Elitist Non-dominated Sorting Genetic Algorithm II (NSGA-II) is employed to capture the optimal Pareto front, wherein the Primal–Dual Interior-Point (PDIP) method combined with the point-estimate method is adopted to evaluate the objective functions. In addition, decision makers can use a fuzzy decision making approach based on their preference to select the final optimal solution from the optimal Pareto front. The effectiveness of the proposed model and method are validated on a modified IEEE 24-bus electricity network integrated with a 15-node natural gas system as well as a real-world system of Hainan province.
•Developed a multi-objective model for the combined natural gas network and electricity network.•Taken into account the uncertainty and correlations of wind power in the proposed model.•Presented an improved point-estimation method to solve the combined optimal power and natural gas load flow. With the increasing proportion of natural gas in power generation, natural gas network and electricity network are closely coupled. Therefore, planning of any individual system regardless of such interdependence will increase the total cost of the whole combined systems. Therefore, a multi-objective optimization model for the combined gas and electricity network planning is presented in this work. To be specific, the objectives of the proposed model are to minimize both investment cost and production cost of the combined system while taking into account the N−1 network security criterion. Moreover, the stochastic nature of wind power generation is addressed in the proposed model. Consequently, it leads to a mixed integer non-linear, multi-objective, stochastic programming problem. To solve this complex model, the Elitist Non-dominated Sorting Genetic Algorithm II (NSGA-II) is employed to capture the optimal Pareto front, wherein the Primal–Dual Interior-Point (PDIP) method combined with the point-estimate method is adopted to evaluate the objective functions. In addition, decision makers can use a fuzzy decision making approach based on their preference to select the final optimal solution from the optimal Pareto front. The effectiveness of the proposed model and method are validated on a modified IEEE 24-bus electricity network integrated with a 15-node natural gas system as well as a real-world system of Hainan province.
With the increasing proportion of natural gas in power generation, natural gas network and electricity network are closely coupled. Therefore, planning of any individual system regardless of such interdependence will increase the total cost of the whole combined systems. Therefore, a multi-objective optimization model for the combined gas and electricity network planning is presented in this work. To be specific, the objectives of the proposed model are to minimize both investment cost and production cost of the combined system while taking into account the N-1 network security criterion. Moreover, the stochastic nature of wind power generation is addressed in the proposed model. Consequently, it leads to a mixed integer non-linear, multi-objective, stochastic programming problem. To solve this complex model, the Elitist Non-dominated Sorting Genetic Algorithm II (NSGA-II) is employed to capture the optimal Pareto front, wherein the Primal-Dual Interior-Point (PDIP) method combined with the point-estimate method is adopted to evaluate the objective functions. In addition, decision makers can use a fuzzy decision making approach based on their preference to select the final optimal solution from the optimal Pareto front. The effectiveness of the proposed model and method are validated on a modified IEEE 24-bus electricity network integrated with a 15-node natural gas system as well as a real-world system of Hainan province.
Author Hu, Yuan
Lin, Yanling
Ding, Tao
Bie, Zhaohong
Author_xml – sequence: 1
  givenname: Yuan
  surname: Hu
  fullname: Hu, Yuan
– sequence: 2
  givenname: Zhaohong
  surname: Bie
  fullname: Bie, Zhaohong
  email: zhbie@mail.xjtu.edu.cn
– sequence: 3
  givenname: Tao
  surname: Ding
  fullname: Ding, Tao
– sequence: 4
  givenname: Yanling
  surname: Lin
  fullname: Lin, Yanling
BookMark eNqFkU9vEzEQxS1UJNLCV0A-ctngP7uOLXEgqqBEquAAnC2vPY4cdu3FdlrCp2e3gQuXnEYa_d7TzHvX6CqmCAi9pmRNCRVvD2szQYS8P60Zod162bfyGVpRuWGNolReoRXhRDRMUPUCXZdyIIQwysgKhW3En7_ebZvdDvemgMPjcaihSf0BbA0PgNNUwxh-mxpSxD5lbNPYhziTe1OwiQ7DMKM52FBPOEJ9TPkHhl-TiWWRTIOJMcT9S_Tcm6HAq7_zBn3_-OHb7afm_svd7nZ739iOstoI5nwvesm8AkGla6EnxCtiFHAquVWuZV7SbgOu55x23rve0o5Ly5wknvEb9ObsO-X08wil6jEUC8N8BqRj0Wz5fSM6ri6iVFJBJJeMX0Y3iqi2E2xxFWfU5lRKBq-nHEaTT5oSvTSmD_pfY3pp7Gnfyln47j_hHOlT7jWbMFyWvz_LYU73IUDWxQaIFlzIc0HapXDJ4g_LrLmy
CitedBy_id crossref_primary_10_1016_j_energy_2024_131144
crossref_primary_10_3390_app11041760
crossref_primary_10_1155_2018_1267045
crossref_primary_10_1016_j_est_2025_115430
crossref_primary_10_1016_j_energy_2020_117916
crossref_primary_10_1016_j_jclepro_2024_142064
crossref_primary_10_1007_s11630_019_1188_3
crossref_primary_10_3390_en12122325
crossref_primary_10_1016_j_apenergy_2016_08_040
crossref_primary_10_1016_j_energy_2017_01_111
crossref_primary_10_3390_en11040734
crossref_primary_10_1016_j_jclepro_2019_118866
crossref_primary_10_1007_s10999_022_09596_8
crossref_primary_10_1016_j_knosys_2023_110421
crossref_primary_10_1016_j_epsr_2021_107543
crossref_primary_10_1016_j_applthermaleng_2020_116443
crossref_primary_10_1109_ACCESS_2018_2818756
crossref_primary_10_1016_j_scs_2021_103651
crossref_primary_10_1109_TPWRS_2018_2832192
crossref_primary_10_1016_j_apenergy_2019_05_003
crossref_primary_10_1109_TVT_2018_2868942
crossref_primary_10_1109_TPWRS_2017_2701881
crossref_primary_10_1109_TPWRS_2019_2935771
crossref_primary_10_3390_en12122316
crossref_primary_10_1007_s13202_022_01490_5
crossref_primary_10_1016_j_ijepes_2019_105777
crossref_primary_10_1109_ACCESS_2020_3020570
crossref_primary_10_1016_j_apenergy_2017_10_128
crossref_primary_10_1109_TPWRS_2018_2850840
crossref_primary_10_1049_gtd2_12277
crossref_primary_10_1016_j_apenergy_2020_116142
crossref_primary_10_1016_j_epsr_2021_107673
crossref_primary_10_3390_su13137425
crossref_primary_10_1016_j_jhydrol_2018_06_041
crossref_primary_10_1016_j_ijepes_2021_107640
crossref_primary_10_1109_TII_2019_2924927
crossref_primary_10_1049_iet_gtd_2019_0712
crossref_primary_10_1016_j_energy_2023_128113
crossref_primary_10_1016_j_apenergy_2025_125476
crossref_primary_10_1109_TPWRS_2018_2878480
crossref_primary_10_1016_j_apenergy_2016_12_093
crossref_primary_10_3390_en12234584
crossref_primary_10_1109_TPWRS_2018_2849958
crossref_primary_10_1016_j_apenergy_2016_09_039
crossref_primary_10_1016_j_jclepro_2019_06_028
crossref_primary_10_1109_ACCESS_2020_3042890
crossref_primary_10_1007_s40565_017_0279_y
crossref_primary_10_1109_ACCESS_2024_3430862
crossref_primary_10_1016_j_jclepro_2020_121079
crossref_primary_10_1016_j_rockmb_2025_100223
crossref_primary_10_1016_j_est_2023_109718
crossref_primary_10_1109_TPWRS_2020_3018869
crossref_primary_10_3390_en13195097
crossref_primary_10_1016_j_enconman_2023_117731
crossref_primary_10_3390_su15086602
crossref_primary_10_1088_1742_6596_1972_1_012014
crossref_primary_10_1016_j_apenergy_2025_126572
crossref_primary_10_1016_j_compstruct_2023_117622
crossref_primary_10_3390_en15218109
crossref_primary_10_1016_j_energy_2023_128976
crossref_primary_10_1016_j_renene_2018_09_042
crossref_primary_10_1016_j_apenergy_2017_05_072
crossref_primary_10_1016_j_apenergy_2018_06_049
crossref_primary_10_3390_en14144185
crossref_primary_10_1049_iet_gtd_2019_0570
crossref_primary_10_1016_j_apenergy_2021_117703
crossref_primary_10_1016_j_energy_2017_06_090
crossref_primary_10_1109_TSTE_2018_2843121
crossref_primary_10_1007_s10462_023_10526_z
crossref_primary_10_1080_15435075_2020_1809424
crossref_primary_10_1016_j_apenergy_2018_08_087
crossref_primary_10_1109_ACCESS_2024_3519180
crossref_primary_10_1007_s40518_018_0093_9
crossref_primary_10_1016_j_apenergy_2021_117384
crossref_primary_10_1109_ACCESS_2019_2927103
crossref_primary_10_1016_j_enconman_2019_01_114
crossref_primary_10_1016_j_ijepes_2021_107144
crossref_primary_10_1093_ijlct_ctac139
crossref_primary_10_1109_JPROC_2020_3005505
crossref_primary_10_1109_TSG_2022_3175801
crossref_primary_10_1007_s11814_024_00136_y
crossref_primary_10_1016_j_energy_2021_121416
crossref_primary_10_1109_TPWRS_2020_3038078
crossref_primary_10_1016_j_apenergy_2020_114567
crossref_primary_10_1016_j_energy_2019_03_154
crossref_primary_10_1016_j_egypro_2016_11_268
crossref_primary_10_3390_en12102012
crossref_primary_10_1016_j_apenergy_2021_118061
crossref_primary_10_1007_s40998_018_0138_5
crossref_primary_10_1016_j_applthermaleng_2019_114071
crossref_primary_10_1016_j_segan_2022_100893
crossref_primary_10_1049_iet_rpg_2020_0285
crossref_primary_10_1016_j_ijepes_2020_106673
crossref_primary_10_1049_iet_rpg_2019_1181
crossref_primary_10_1016_j_apenergy_2017_06_062
crossref_primary_10_1016_j_jclepro_2020_122117
crossref_primary_10_1049_iet_rpg_2019_0651
crossref_primary_10_1088_1755_1315_621_1_012062
crossref_primary_10_1016_j_est_2023_107060
crossref_primary_10_1109_ACCESS_2018_2859816
crossref_primary_10_1049_gtd2_12208
crossref_primary_10_1016_j_ijepes_2017_09_031
crossref_primary_10_1016_j_apenergy_2024_124348
crossref_primary_10_1016_j_energy_2023_127697
crossref_primary_10_1109_ACCESS_2020_2976835
crossref_primary_10_1109_TSTE_2020_3025831
crossref_primary_10_1016_j_energy_2019_05_119
crossref_primary_10_1016_j_egypro_2017_08_174
crossref_primary_10_1016_j_tsep_2018_10_009
crossref_primary_10_1049_iet_gtd_2020_0453
crossref_primary_10_1016_j_apenergy_2016_02_075
crossref_primary_10_3390_app13063780
crossref_primary_10_1016_j_seta_2021_101300
crossref_primary_10_1016_j_suscom_2025_101108
crossref_primary_10_1109_TPWRS_2021_3054936
crossref_primary_10_1016_j_apenergy_2018_09_148
crossref_primary_10_1016_j_apenergy_2018_05_051
crossref_primary_10_1049_iet_gtd_2018_6357
crossref_primary_10_1109_TPWRS_2018_2833465
crossref_primary_10_1109_TSTE_2021_3105525
crossref_primary_10_1007_s11431_019_9553_0
crossref_primary_10_1016_j_apenergy_2021_117395
crossref_primary_10_1016_j_comnet_2021_108041
crossref_primary_10_1109_ACCESS_2020_3011720
Cites_doi 10.1109/4235.996017
10.1016/j.enpol.2010.05.016
10.1109/TIA.2004.841032
10.1109/TPWRS.2009.2020530
10.1109/TPWRS.2009.2036797
10.1109/TPWRS.2013.2263256
10.1049/iet-gtd.2010.0151
10.1109/TPWRS.2014.2299714
10.1109/TPWRS.2002.807083
10.1175/1520-0450(1976)015<0673:NAOPOF>2.0.CO;2
10.1016/j.apenergy.2013.08.071
10.1063/1.3600761
10.1049/iet-gtd.2009.0639
10.1109/TPWRS.2012.2191984
10.1002/2013EF000196
10.1109/TPWRS.2011.2182363
10.1016/j.epsr.2007.11.002
10.1016/j.apenergy.2014.06.042
10.1016/j.rser.2011.07.122
10.1109/TPWRS.2009.2023262
10.1109/TPWRS.2014.2369011
10.1109/TPWRS.2014.2344861
ContentType Journal Article
Copyright 2015 The Authors
Copyright_xml – notice: 2015 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7ST
C1K
SOI
7TA
8FD
F28
FR3
JG9
7S9
L.6
DOI 10.1016/j.apenergy.2015.10.148
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Materials Business File
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Engineering Research Database
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Materials Business File
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Materials Research Database
Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 293
ExternalDocumentID 10_1016_j_apenergy_2015_10_148
S0306261915013902
GeographicLocations ISEW, China, People's Rep., Hainan Prov
China
GeographicLocations_xml – name: ISEW, China, People's Rep., Hainan Prov
– name: China
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: EIPE14106
– fundername: Doctoral Program of Higher Education for the Priority Development Areas
  grantid: 20130201130001
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7ST
C1K
SOI
7TA
8FD
F28
FR3
JG9
7S9
L.6
ID FETCH-LOGICAL-c512t-62dfb6b82f9e618d4eb00f90a9e3183c9d42f8157edb3315ffdbc1538c2d80f23
ISICitedReferencesCount 147
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373748400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Thu Oct 02 03:40:06 EDT 2025
Sun Sep 28 06:49:35 EDT 2025
Tue Oct 07 09:20:51 EDT 2025
Sat Nov 29 07:25:19 EST 2025
Tue Nov 18 21:18:57 EST 2025
Fri Feb 23 02:32:52 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Natural gas network expansion planning
Primal–Dual Interior-Point method
Point-estimate method
Multi-objective
Transmission expansion planning
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c512t-62dfb6b82f9e618d4eb00f90a9e3183c9d42f8157edb3315ffdbc1538c2d80f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.apenergy.2015.10.148
PQID 1790945629
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_2000276539
proquest_miscellaneous_1816083823
proquest_miscellaneous_1790945629
crossref_primary_10_1016_j_apenergy_2015_10_148
crossref_citationtrail_10_1016_j_apenergy_2015_10_148
elsevier_sciencedirect_doi_10_1016_j_apenergy_2015_10_148
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References De Gouw, Parrish, Frost, Trainer (b0020) 2014; 2
Martinez-Mares, Fuerte-Esquivel (b0095) 2013; 28
Liu, Shahidehpour, Fu, Li (b0055) 2009; 24
Cui, Li, Ren, Xue, Fang (b0085) 2012
Wang, Gong, Jiang (b0130) 2015; 30
Chompoo-Inwai, Lee, Fuangfoo, Williams, Liao (b0080) 2005; 41
An, Li, Gedra (b0030) 2003; 1
Deb, Pratap, Agarwal, Meyarivan (b0110) 2002; 6
Morales, Baringo, Conejo, Mínguez (b0120) 2010; 4
Qadrdan, Chaudry, Wu, Jenkins, Ekanayake (b0090) 2010; 38
Liu, Shahidehpour, Wang (b0050) 2011; 21
NERC. NERC planning standard; 1997.
Qiu, Dong, Zhao, Meng, Zheng, Hill (b0075) 2015; 30
Unsihuay-Vila, Marangon-Lima, Perez-Arriaga, Balestrassi (b0065) 2010; 25
Liu, Shahidehpour, Wang (b0060) 2010; 4
Chaudry, Jenkins, Strbac (b0040) 2008; 78
Hedman, O’Neill, Fisher, Oren (b0115) 2009; 24
Chaudry, Jenkins, Qadrdan, Wu (b0025) 2014; 113
Martínez-Mares, Fuerte-Esquivel (b0035) 2012; 27
Justus, Hargraves, Yalcin (b0125) 1976; 15
Barati, Seifi, Sepasian, Nateghi, Shafie-khah, Catalão (b0070) 2014
Wei, Li, Zijun, Junzhao, Li (b0105) 2011
Üster, Dilaveroğlu (b0005) 2014; 133
Fang, Hill (b0140) 2003; 18
Ozturk, Yuksel, Ozek (b0010) 2011; 15
Moeini-Aghtaie, Abbaspour, Fotuhi-Firuzabad (b0135) 2012; 27
International energy agency. World energy, Outlook 2010; 2010.
Correa-Posada, Sánchez-Martın (b0045) 2014; 29
Ozturk (10.1016/j.apenergy.2015.10.148_b0010) 2011; 15
Chaudry (10.1016/j.apenergy.2015.10.148_b0025) 2014; 113
Qadrdan (10.1016/j.apenergy.2015.10.148_b0090) 2010; 38
Martinez-Mares (10.1016/j.apenergy.2015.10.148_b0095) 2013; 28
Üster (10.1016/j.apenergy.2015.10.148_b0005) 2014; 133
Liu (10.1016/j.apenergy.2015.10.148_b0050) 2011; 21
Hedman (10.1016/j.apenergy.2015.10.148_b0115) 2009; 24
Liu (10.1016/j.apenergy.2015.10.148_b0055) 2009; 24
Martínez-Mares (10.1016/j.apenergy.2015.10.148_b0035) 2012; 27
Justus (10.1016/j.apenergy.2015.10.148_b0125) 1976; 15
Qiu (10.1016/j.apenergy.2015.10.148_b0075) 2015; 30
Morales (10.1016/j.apenergy.2015.10.148_b0120) 2010; 4
Cui (10.1016/j.apenergy.2015.10.148_b0085) 2012
Chaudry (10.1016/j.apenergy.2015.10.148_b0040) 2008; 78
Wang (10.1016/j.apenergy.2015.10.148_b0130) 2015; 30
Fang (10.1016/j.apenergy.2015.10.148_b0140) 2003; 18
Chompoo-Inwai (10.1016/j.apenergy.2015.10.148_b0080) 2005; 41
Wei (10.1016/j.apenergy.2015.10.148_b0105) 2011
Moeini-Aghtaie (10.1016/j.apenergy.2015.10.148_b0135) 2012; 27
10.1016/j.apenergy.2015.10.148_b0015
Unsihuay-Vila (10.1016/j.apenergy.2015.10.148_b0065) 2010; 25
10.1016/j.apenergy.2015.10.148_b0100
Liu (10.1016/j.apenergy.2015.10.148_b0060) 2010; 4
De Gouw (10.1016/j.apenergy.2015.10.148_b0020) 2014; 2
Deb (10.1016/j.apenergy.2015.10.148_b0110) 2002; 6
An (10.1016/j.apenergy.2015.10.148_b0030) 2003; 1
Correa-Posada (10.1016/j.apenergy.2015.10.148_b0045) 2014; 29
Barati (10.1016/j.apenergy.2015.10.148_b0070) 2014
References_xml – volume: 38
  start-page: 5684
  year: 2010
  end-page: 5695
  ident: b0090
  article-title: Impact of a large penetration of wind generation on the GB gas network
  publication-title: Energy Policy
– start-page: 285
  year: 2012
  end-page: 288
  ident: b0085
  article-title: Review of transmission planning with large-scale wind power integration
  publication-title: 2012 Electromagn Comp (APEMC)
– volume: 28
  start-page: 3964
  year: 2013
  end-page: 3976
  ident: b0095
  article-title: A robust optimization approach for the interdependency analysis of integrated energy systems considering wind power uncertainty
  publication-title: IEEE Trans Power Syst
– volume: 133
  start-page: 56
  year: 2014
  end-page: 69
  ident: b0005
  article-title: Optimization for design and operation of natural gas transmission networks
  publication-title: Appl Energy
– volume: 30
  start-page: 1094
  year: 2015
  end-page: 1103
  ident: b0130
  article-title: Regional carbon emission management based on probabilistic power flow with correlated stochastic variables
  publication-title: IEEE Trans Power Syst
– volume: 18
  start-page: 374
  year: 2003
  end-page: 380
  ident: b0140
  article-title: A new strategy for transmission expansion in competitive electricity markets
  publication-title: IEEE Trans Power Syst
– reference: International energy agency. World energy, Outlook 2010; 2010.
– volume: 25
  start-page: 1154
  year: 2010
  end-page: 1168
  ident: b0065
  article-title: A model to long-term, multiarea, multistage, and integrated expansion planning of electricity and natural gas systems
  publication-title: IEEE Trans Power Syst
– volume: 1
  start-page: 138
  year: 2003
  end-page: 143
  ident: b0030
  article-title: Natural gas and electricity optimal power flow, transmission and distribution conference and exposition
  publication-title: IEEE Power Eng Soc
– volume: 24
  start-page: 1577
  year: 2009
  end-page: 1586
  ident: b0115
  article-title: Optimal transmission switching with contingency analysis
  publication-title: IEEE Trans Power Syst
– volume: 30
  start-page: 1035
  year: 2015
  end-page: 1046
  ident: b0075
  article-title: Low carbon oriented expansion planning of integrated gas and power systems
  publication-title: IEEE Trans Power Syst
– reference: NERC. NERC planning standard; 1997.
– volume: 4
  start-page: 641
  year: 2010
  end-page: 651
  ident: b0120
  article-title: Probabilistic power flow with correlated wind sources
  publication-title: Gener Transm Distrib
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0110
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: Evol Comput
– volume: 15
  start-page: 673
  year: 1976
  end-page: 678
  ident: b0125
  article-title: Nationwide assessment of potential output from wind-powered generators
  publication-title: J Appl Meteorol
– volume: 113
  start-page: 1171
  year: 2014
  end-page: 1187
  ident: b0025
  article-title: Combined gas and electricity network expansion planning
  publication-title: Appl Energy
– year: 2014
  ident: b0070
  article-title: Multi-period integrated framework of generation, transmission, and natural gas grid expansion planning for large-scale systems
  publication-title: IEEE Trans Power Syst
– volume: 15
  start-page: 4286
  year: 2011
  end-page: 4294
  ident: b0010
  article-title: A bridge between east and west: Turkey’s natural gas policy
  publication-title: Renew Sustain Energy Rev
– volume: 27
  start-page: 2156
  year: 2012
  end-page: 2166
  ident: b0035
  article-title: A unified gas and power flow analysis in natural gas and electricity coupled networks
  publication-title: IEEE Trans Power Syst
– volume: 24
  start-page: 1523
  year: 2009
  end-page: 1536
  ident: b0055
  article-title: Security-constrained unit commitment with natural gas transmission constraints
  publication-title: IEEE Trans Power Syst
– volume: 2
  start-page: 75
  year: 2014
  end-page: 82
  ident: b0020
  article-title: Reduced emissions of CO2, NOx, and SO2 from US power plants owing to switch from coal to natural gas with combined cycle technology
  publication-title: Earth’s Future
– volume: 41
  start-page: 163
  year: 2005
  end-page: 168
  ident: b0080
  article-title: System impact study for the interconnection of wind generation and utility system
  publication-title: Ind Appl
– volume: 21
  start-page: 025102
  year: 2011
  ident: b0050
  article-title: Coordinated scheduling of electricity and natural gas infrastructures with a transient model for natural gas flow
  publication-title: Chaos: An Interdiscipl J Nonlinear Sci
– start-page: 1250
  year: 2011
  end-page: 1254
  ident: b0105
  article-title: Transmission network planning with N-1 security criterion based on improved multi-objective genetic algorithm
  publication-title: Electr Utility Deregul Restruct Power Technol (DRPT)
– volume: 29
  start-page: 1780
  year: 2014
  end-page: 1787
  ident: b0045
  article-title: Security-constrained optimal power and natural-gas flow
  publication-title: IEEE Trans Power Syst
– volume: 27
  start-page: 1585
  year: 2012
  end-page: 1593
  ident: b0135
  article-title: Incorporating large-scale distant wind farms in probabilistic transmission expansion planning—Part I: Theory and algorithm
  publication-title: IEEE Trans Power Syst
– volume: 78
  start-page: 1265
  year: 2008
  end-page: 1279
  ident: b0040
  article-title: Multi-time period combined gas and electricity network optimisation
  publication-title: Electr Power Syst Res
– volume: 4
  start-page: 1314
  year: 2010
  end-page: 1325
  ident: b0060
  article-title: Application of augmented Lagrangian relaxation to coordinated scheduling of interdependent hydrothermal power and natural gas systems
  publication-title: Gener Transm Distrib
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.apenergy.2015.10.148_b0110
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: Evol Comput
  doi: 10.1109/4235.996017
– ident: 10.1016/j.apenergy.2015.10.148_b0015
– volume: 38
  start-page: 5684
  issue: 10
  year: 2010
  ident: 10.1016/j.apenergy.2015.10.148_b0090
  article-title: Impact of a large penetration of wind generation on the GB gas network
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2010.05.016
– start-page: 1250
  year: 2011
  ident: 10.1016/j.apenergy.2015.10.148_b0105
  article-title: Transmission network planning with N-1 security criterion based on improved multi-objective genetic algorithm
  publication-title: Electr Utility Deregul Restruct Power Technol (DRPT)
– volume: 41
  start-page: 163
  issue: 1
  year: 2005
  ident: 10.1016/j.apenergy.2015.10.148_b0080
  article-title: System impact study for the interconnection of wind generation and utility system
  publication-title: Ind Appl
  doi: 10.1109/TIA.2004.841032
– volume: 24
  start-page: 1577
  issue: 3
  year: 2009
  ident: 10.1016/j.apenergy.2015.10.148_b0115
  article-title: Optimal transmission switching with contingency analysis
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2020530
– volume: 25
  start-page: 1154
  issue: 2
  year: 2010
  ident: 10.1016/j.apenergy.2015.10.148_b0065
  article-title: A model to long-term, multiarea, multistage, and integrated expansion planning of electricity and natural gas systems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2036797
– year: 2014
  ident: 10.1016/j.apenergy.2015.10.148_b0070
  article-title: Multi-period integrated framework of generation, transmission, and natural gas grid expansion planning for large-scale systems
  publication-title: IEEE Trans Power Syst
– volume: 28
  start-page: 3964
  issue: 4
  year: 2013
  ident: 10.1016/j.apenergy.2015.10.148_b0095
  article-title: A robust optimization approach for the interdependency analysis of integrated energy systems considering wind power uncertainty
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2263256
– volume: 4
  start-page: 1314
  issue: 12
  year: 2010
  ident: 10.1016/j.apenergy.2015.10.148_b0060
  article-title: Application of augmented Lagrangian relaxation to coordinated scheduling of interdependent hydrothermal power and natural gas systems
  publication-title: Gener Transm Distrib
  doi: 10.1049/iet-gtd.2010.0151
– volume: 29
  start-page: 1780
  issue: 4
  year: 2014
  ident: 10.1016/j.apenergy.2015.10.148_b0045
  article-title: Security-constrained optimal power and natural-gas flow
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2014.2299714
– volume: 18
  start-page: 374
  issue: 1
  year: 2003
  ident: 10.1016/j.apenergy.2015.10.148_b0140
  article-title: A new strategy for transmission expansion in competitive electricity markets
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2002.807083
– volume: 15
  start-page: 673
  issue: 7
  year: 1976
  ident: 10.1016/j.apenergy.2015.10.148_b0125
  article-title: Nationwide assessment of potential output from wind-powered generators
  publication-title: J Appl Meteorol
  doi: 10.1175/1520-0450(1976)015<0673:NAOPOF>2.0.CO;2
– volume: 113
  start-page: 1171
  year: 2014
  ident: 10.1016/j.apenergy.2015.10.148_b0025
  article-title: Combined gas and electricity network expansion planning
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.08.071
– volume: 1
  start-page: 138
  year: 2003
  ident: 10.1016/j.apenergy.2015.10.148_b0030
  article-title: Natural gas and electricity optimal power flow, transmission and distribution conference and exposition
  publication-title: IEEE Power Eng Soc
– volume: 21
  start-page: 025102
  issue: 2
  year: 2011
  ident: 10.1016/j.apenergy.2015.10.148_b0050
  article-title: Coordinated scheduling of electricity and natural gas infrastructures with a transient model for natural gas flow
  publication-title: Chaos: An Interdiscipl J Nonlinear Sci
  doi: 10.1063/1.3600761
– volume: 4
  start-page: 641
  issue: 5
  year: 2010
  ident: 10.1016/j.apenergy.2015.10.148_b0120
  article-title: Probabilistic power flow with correlated wind sources
  publication-title: Gener Transm Distrib
  doi: 10.1049/iet-gtd.2009.0639
– volume: 27
  start-page: 2156
  issue: 4
  year: 2012
  ident: 10.1016/j.apenergy.2015.10.148_b0035
  article-title: A unified gas and power flow analysis in natural gas and electricity coupled networks
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2012.2191984
– ident: 10.1016/j.apenergy.2015.10.148_b0100
– volume: 2
  start-page: 75
  issue: 2
  year: 2014
  ident: 10.1016/j.apenergy.2015.10.148_b0020
  article-title: Reduced emissions of CO2, NOx, and SO2 from US power plants owing to switch from coal to natural gas with combined cycle technology
  publication-title: Earth’s Future
  doi: 10.1002/2013EF000196
– volume: 27
  start-page: 1585
  issue: 3
  year: 2012
  ident: 10.1016/j.apenergy.2015.10.148_b0135
  article-title: Incorporating large-scale distant wind farms in probabilistic transmission expansion planning—Part I: Theory and algorithm
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2011.2182363
– volume: 78
  start-page: 1265
  issue: 7
  year: 2008
  ident: 10.1016/j.apenergy.2015.10.148_b0040
  article-title: Multi-time period combined gas and electricity network optimisation
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2007.11.002
– volume: 133
  start-page: 56
  year: 2014
  ident: 10.1016/j.apenergy.2015.10.148_b0005
  article-title: Optimization for design and operation of natural gas transmission networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.06.042
– start-page: 285
  year: 2012
  ident: 10.1016/j.apenergy.2015.10.148_b0085
  article-title: Review of transmission planning with large-scale wind power integration
  publication-title: 2012 Electromagn Comp (APEMC)
– volume: 15
  start-page: 4286
  issue: 9
  year: 2011
  ident: 10.1016/j.apenergy.2015.10.148_b0010
  article-title: A bridge between east and west: Turkey’s natural gas policy
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2011.07.122
– volume: 24
  start-page: 1523
  issue: 3
  year: 2009
  ident: 10.1016/j.apenergy.2015.10.148_b0055
  article-title: Security-constrained unit commitment with natural gas transmission constraints
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2023262
– volume: 30
  start-page: 1035
  issue: 2
  year: 2015
  ident: 10.1016/j.apenergy.2015.10.148_b0075
  article-title: Low carbon oriented expansion planning of integrated gas and power systems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2014.2369011
– volume: 30
  start-page: 1094
  issue: 2
  year: 2015
  ident: 10.1016/j.apenergy.2015.10.148_b0130
  article-title: Regional carbon emission management based on probabilistic power flow with correlated stochastic variables
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2014.2344861
SSID ssj0002120
Score 2.5359547
Snippet •Developed a multi-objective model for the combined natural gas network and electricity network.•Taken into account the uncertainty and correlations of wind...
With the increasing proportion of natural gas in power generation, natural gas network and electricity network are closely coupled. Therefore, planning of any...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 280
SubjectTerms algorithms
China
Decision making
Electricity
Mathematical models
Multi-objective
Natural gas
Natural gas network expansion planning
Networks
Optimization
Pareto optimality
planning
Point-estimate method
power generation
Primal–Dual Interior-Point method
production costs
Stochasticity
Transmission expansion planning
wind power
Title An NSGA-II based multi-objective optimization for combined gas and electricity network expansion planning
URI https://dx.doi.org/10.1016/j.apenergy.2015.10.148
https://www.proquest.com/docview/1790945629
https://www.proquest.com/docview/1816083823
https://www.proquest.com/docview/2000276539
Volume 167
WOSCitedRecordID wos000373748400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELZKxwM8TDCYGANkJN6qjMZxEvsxoAJFU4VEQeUpcmJ7azWSam2n_QB-OOfYbrPCNvbAi1W5thX3vt6dnbvvEHqjqKQSjsmBDjUJKNiIgJNEBiJRVMUJFaIh0_l-nI5GbDLhXzqdXz4X5uIsrSp2ecnn_1XU0AfCNqmzdxD3elHogM8gdGhB7ND-k-Czqjf6-jELhsOeMVHSxgwGdTGzuq1Xg5b46dIvmyhDeAo4H8PIE2EZm21tnGlpPPTKxombUgBg1cyUuatz1PZrvTOrmlTCDVYaDb_aIPCdex1yKurT2i1h3GhXWWUsat91bMkNfghD5XHSvpwIk1ZMi0vK6ieBOaRdUbi2AIdXmbaSk7O-xNZL_EOx2zuG2ZGY242YoLz4yHxjiTqvMmlvWbh13KEPaZvlfp3crJObfsruoR2Sxpx10U42HEw-ry06cfSefjOtTPO_P9F1Ts6WuW98mPEjtOsOHzizoHmMOqraQw9blJR7aH-wyXyEoU71L56gaVZhhyvc4Apv4Qq3cYUBV9jjCgOuMOAKt3CFHa7wGlfY4-op-vZhMH7_KXB1OoIS3MVlkBCpi6RgRHOVhExSU49K877g5oI9KrmkRLMwTpUsoiiMtZZFaSxtSSTraxLto25VV-oZwkTrfqxTIlPBaRGH0MKBg1GdMkVFJA5Q7H_YvHQk9qaWyll-s2gP0Nv1vLmlcbl1Bvdyy50zap3MHCB569zXXtA5aGvzCk5Uql4tcsOHx82lA79hDAsTOBgxEl0_hjQhA4ZW-vmdd3aIHmz-qi9Qd3m-Ui_R_fJiOV2cv3LY_w1719Y5
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+NSGA-II+based+multi-objective+optimization+for+combined+gas+and+electricity+network+expansion+planning&rft.jtitle=Applied+energy&rft.au=Hu%2C+Yuan&rft.au=Bie%2C+Zhaohong&rft.au=Ding%2C+Tao&rft.au=Lin%2C+Yanling&rft.date=2016-04-01&rft.issn=0306-2619&rft.volume=167&rft.spage=280&rft.epage=293&rft_id=info:doi/10.1016%2Fj.apenergy.2015.10.148&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2015_10_148
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon