Tight bounds for periodicity theorems on the unbounded Knapsack problem

► Developed three new periodicity bounds for UKP. ► Proved each new bound is tight. ► Showed two new bounds subsume known results. Three new bounds for periodicity theorems on the unbounded Knapsack problem are developed. Periodicity theorems specify when it is optimal to pack one unit of the best i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of operational research Ročník 215; číslo 2; s. 319 - 324
Hlavní autoři: Huang, Ping H., Lawley, Mark, Morin, Thomas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.12.2011
Elsevier
Elsevier Sequoia S.A
Edice:European Journal of Operational Research
Témata:
ISSN:0377-2217, 1872-6860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:► Developed three new periodicity bounds for UKP. ► Proved each new bound is tight. ► Showed two new bounds subsume known results. Three new bounds for periodicity theorems on the unbounded Knapsack problem are developed. Periodicity theorems specify when it is optimal to pack one unit of the best item (the one with the highest profit-to-weight ratio). The successive applications of periodicity theorems can drastically reduce the size of the Knapsack problem under analysis, theoretical or empirical. We prove that each new bound is tight in the sense that no smaller bound exists under the given condition.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2011.06.010