SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode
In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting full-scale objects, without making proprietary optimization for detecting small-size objects. For small objects dense scenes, not only the accu...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 22; no. 15; p. 5817 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
04.08.2022
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting full-scale objects, without making proprietary optimization for detecting small-size objects. For small objects dense scenes, not only the accuracy is low, but also there is a certain waste of computing resources. An improved detection algorithm was proposed for small objects based on YOLOv5. By reasonably clipping the feature map output of the large object detection layer, the computing resources required by the model were significantly reduced and the model becomes more lightweight. An improved feature fusion method (PB-FPN) for small object detection based on PANet and BiFPN was proposed, which effectively increased the detection ability for small object of the algorithm. By introducing the spatial pyramid pooling (SPP) in the backbone network into the feature fusion network and connecting with the model prediction head, the performance of the algorithm was effectively enhanced. The experiments demonstrated that the improved algorithm has very good results in detection accuracy and real-time ability. Compared with the classical YOLOv5, the mAP@0.5 and mAP@0.5:0.95 of SF-YOLOv5 were increased by 1.6% and 0.8%, respectively, the number of parameters of the network were reduced by 68.2%, computational resources (FLOPs) were reduced by 12.7%, and the inferring time of the mode was reduced by 6.9%. |
|---|---|
| AbstractList | In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting full-scale objects, without making proprietary optimization for detecting small-size objects. For small objects dense scenes, not only the accuracy is low, but also there is a certain waste of computing resources. An improved detection algorithm was proposed for small objects based on YOLOv5. By reasonably clipping the feature map output of the large object detection layer, the computing resources required by the model were significantly reduced and the model becomes more lightweight. An improved feature fusion method (PB-FPN) for small object detection based on PANet and BiFPN was proposed, which effectively increased the detection ability for small object of the algorithm. By introducing the spatial pyramid pooling (SPP) in the backbone network into the feature fusion network and connecting with the model prediction head, the performance of the algorithm was effectively enhanced. The experiments demonstrated that the improved algorithm has very good results in detection accuracy and real-time ability. Compared with the classical YOLOv5, the mAP@0.5 and mAP@0.5:0.95 of SF-YOLOv5 were increased by 1.6% and 0.8%, respectively, the number of parameters of the network were reduced by 68.2%, computational resources (FLOPs) were reduced by 12.7%, and the inferring time of the mode was reduced by 6.9%. In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting full-scale objects, without making proprietary optimization for detecting small-size objects. For small objects dense scenes, not only the accuracy is low, but also there is a certain waste of computing resources. An improved detection algorithm was proposed for small objects based on YOLOv5. By reasonably clipping the feature map output of the large object detection layer, the computing resources required by the model were significantly reduced and the model becomes more lightweight. An improved feature fusion method (PB-FPN) for small object detection based on PANet and BiFPN was proposed, which effectively increased the detection ability for small object of the algorithm. By introducing the spatial pyramid pooling (SPP) in the backbone network into the feature fusion network and connecting with the model prediction head, the performance of the algorithm was effectively enhanced. The experiments demonstrated that the improved algorithm has very good results in detection accuracy and real-time ability. Compared with the classical YOLOv5, the mAP@0.5 and mAP@0.5:0.95 of SF-YOLOv5 were increased by 1.6% and 0.8%, respectively, the number of parameters of the network were reduced by 68.2%, computational resources (FLOPs) were reduced by 12.7%, and the inferring time of the mode was reduced by 6.9%.In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting full-scale objects, without making proprietary optimization for detecting small-size objects. For small objects dense scenes, not only the accuracy is low, but also there is a certain waste of computing resources. An improved detection algorithm was proposed for small objects based on YOLOv5. By reasonably clipping the feature map output of the large object detection layer, the computing resources required by the model were significantly reduced and the model becomes more lightweight. An improved feature fusion method (PB-FPN) for small object detection based on PANet and BiFPN was proposed, which effectively increased the detection ability for small object of the algorithm. By introducing the spatial pyramid pooling (SPP) in the backbone network into the feature fusion network and connecting with the model prediction head, the performance of the algorithm was effectively enhanced. The experiments demonstrated that the improved algorithm has very good results in detection accuracy and real-time ability. Compared with the classical YOLOv5, the mAP@0.5 and mAP@0.5:0.95 of SF-YOLOv5 were increased by 1.6% and 0.8%, respectively, the number of parameters of the network were reduced by 68.2%, computational resources (FLOPs) were reduced by 12.7%, and the inferring time of the mode was reduced by 6.9%. |
| Author | Deng, Lixia Gu, Jason Liu, Haiying Sun, Fengqian |
| AuthorAffiliation | 1 School of Information and Automation Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China 2 School of Electrical and Computer Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada |
| AuthorAffiliation_xml | – name: 1 School of Information and Automation Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China – name: 2 School of Electrical and Computer Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada |
| Author_xml | – sequence: 1 givenname: Haiying surname: Liu fullname: Liu, Haiying – sequence: 2 givenname: Fengqian surname: Sun fullname: Sun, Fengqian – sequence: 3 givenname: Jason surname: Gu fullname: Gu, Jason – sequence: 4 givenname: Lixia surname: Deng fullname: Deng, Lixia |
| BookMark | eNplkk2P0zAQhi20iP2AA_8gEhc4hLVjO3Y4IJWFQqWiHhYOnCzHHrepkrjYThH_HocuiF0unlfjZ94Z2XOJzkY_AkLPCX5NaYOvY1URziURj9AFYRUrZVXhs3_0ObqMcY9xRSmVT9A55Q0XVPALpG6X5bfNenPkb4pFse62u_QD5rO4HXTfF5t2DyYV7yHl0PmxWPRbH7q0G4p3OoItcmo1HII_Zr0EnaYAxXKKM_rZW3iKHjvdR3h2F6_Q1-WHLzefyvXm4-pmsS4NJ1UqiWOsaiwxhFlqicQNBWOooUJboFIS07bCQo1dLYAYZ1pW40Ywo7kTLWnoFVqdfK3Xe3UI3aDDT-V1p34nfNgqHVJnelBOuhaYkYJRyQipW9eSmnCbRW7GXfZ6e_I6TO0A1sCYgu7vmd6_Gbud2vqjaqggRNJs8PLOIPjvE8Skhi4a6Hs9gp-iqgSuiGSCsYy-eIDu_RTG_FQzhYVo6kZm6vpEmeBjDOCU6ZKe_yP373pFsJoXQf1dhFzx6kHFn_H_Z38BfCuypA |
| CitedBy_id | crossref_primary_10_3390_agriengineering6040261 crossref_primary_10_3390_app14135841 crossref_primary_10_1016_j_imavis_2023_104855 crossref_primary_10_3390_agronomy14081808 crossref_primary_10_1049_ipr2_70134 crossref_primary_10_3389_fcomp_2024_1480481 crossref_primary_10_3390_agronomy15040996 crossref_primary_10_3390_electronics12102323 crossref_primary_10_3390_diagnostics14151672 crossref_primary_10_3390_rs16132465 crossref_primary_10_3390_s22218480 crossref_primary_10_1587_transinf_2024EDP7204 crossref_primary_10_1109_ACCESS_2024_3459868 crossref_primary_10_3390_s24113596 crossref_primary_10_1007_s11554_024_01567_w crossref_primary_10_1109_ACCESS_2024_3515201 crossref_primary_10_1109_ACCESS_2025_3589512 crossref_primary_10_1007_s11760_024_03369_w crossref_primary_10_3390_drones9080514 crossref_primary_10_1016_j_inffus_2024_102369 crossref_primary_10_1109_JRFID_2024_3384483 crossref_primary_10_1016_j_cosrev_2025_100736 crossref_primary_10_3389_fmicb_2023_1240936 crossref_primary_10_1016_j_measen_2024_101214 crossref_primary_10_1080_17480272_2024_2319663 crossref_primary_10_1109_LSP_2024_3477263 crossref_primary_10_1007_s11227_024_06121_w crossref_primary_10_1016_j_dsp_2025_105268 crossref_primary_10_1016_j_lfs_2024_123209 crossref_primary_10_3390_electronics12163421 crossref_primary_10_3390_electronics12224589 crossref_primary_10_3390_info15040178 crossref_primary_10_1016_j_neucom_2024_127941 crossref_primary_10_3390_electronics14050876 crossref_primary_10_1111_cas_16330 crossref_primary_10_35633_inmateh_76_07 crossref_primary_10_1109_ACCESS_2025_3573651 crossref_primary_10_1186_s44147_025_00644_6 crossref_primary_10_1109_ACCESS_2024_3383047 crossref_primary_10_1111_mice_70034 crossref_primary_10_3390_agriengineering7030063 crossref_primary_10_3390_app13179989 crossref_primary_10_3389_fbioe_2024_1432737 crossref_primary_10_1038_s41598_022_27189_5 crossref_primary_10_3390_s23010097 crossref_primary_10_1007_s11554_024_01558_x crossref_primary_10_2478_jofnem_2023_0045 crossref_primary_10_1371_journal_pone_0304657 crossref_primary_10_3390_s23177310 crossref_primary_10_3390_s25020438 crossref_primary_10_3390_su151914326 crossref_primary_10_1007_s44443_025_00116_0 crossref_primary_10_1109_LGRS_2023_3327878 crossref_primary_10_3390_agronomy12123054 crossref_primary_10_1109_ACCESS_2025_3582136 crossref_primary_10_1109_ACCESS_2023_3241005 crossref_primary_10_1109_ACCESS_2024_3415385 crossref_primary_10_3390_jmse11010106 crossref_primary_10_3390_electronics12020377 crossref_primary_10_3390_math11163538 crossref_primary_10_21595_jme_2025_24634 crossref_primary_10_3390_math12070957 crossref_primary_10_1155_acis_6263757 crossref_primary_10_3390_math10224366 crossref_primary_10_1109_ACCESS_2025_3595175 crossref_primary_10_1109_ACCESS_2025_3526458 crossref_primary_10_1017_S0263574725000475 crossref_primary_10_3390_s22228820 crossref_primary_10_3390_info15040239 crossref_primary_10_3390_f15071176 crossref_primary_10_3390_app13137367 crossref_primary_10_1007_s42979_024_03520_x |
| Cites_doi | 10.1109/CVPR52729.2023.00721 10.1109/CVPR.2018.00418 10.1109/CVPR.2017.690 10.1109/CVPR.2014.81 10.1109/ICCVW54120.2021.00312 10.1109/TPAMI.2015.2389824 10.1109/ICCV.2017.322 10.1109/CVPR.2019.00720 10.1109/CVPR.2017.106 10.1109/ICCVW.2019.00011 10.1109/ICPR.2006.479 10.1007/978-3-319-46448-0_2 10.3390/e24040487 10.1109/CVPR.2018.00913 10.1109/CVPR.2016.91 10.1109/CVPR.2009.5206848 10.1109/WACV45572.2020.9093394 10.1109/SLT48900.2021.9383531 10.1109/TPAMI.2021.3119563 10.1109/CVPR.2017.634 10.3390/s22135012 10.1007/978-3-319-10602-1_48 10.1109/CVPR.2019.00075 10.1109/CVPR.2016.596 10.1109/CVPR42600.2020.01079 10.1109/CVPR.2018.00377 10.1109/CVPR.2019.00533 10.1109/ICCV.2015.169 10.3390/e23111437 10.1109/CVPRW50498.2020.00203 10.1016/j.imavis.2020.103910 10.1109/WACV45572.2020.9093445 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22155817 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_f8fbe4c874384116bfb1615d6bfade5f PMC9371183 10_3390_s22155817 |
| GrantInformation_xml | – fundername: QLUTGJHZ2018019 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c512t-1f4429d1c14d3d18093ecc3c37ade3881cbb7de60f67e1cfcb460974ca5f7b193 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 108 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000839985700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:51:20 EDT 2025 Tue Nov 04 01:46:20 EST 2025 Sun Nov 09 13:04:36 EST 2025 Tue Oct 07 07:11:52 EDT 2025 Tue Nov 18 21:19:39 EST 2025 Sat Nov 29 07:14:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c512t-1f4429d1c14d3d18093ecc3c37ade3881cbb7de60f67e1cfcb460974ca5f7b193 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2700779698?pq-origsite=%requestingapplication% |
| PMID | 35957375 |
| PQID | 2700779698 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f8fbe4c874384116bfb1615d6bfade5f pubmedcentral_primary_oai_pubmedcentral_nih_gov_9371183 proquest_miscellaneous_2702184744 proquest_journals_2700779698 crossref_citationtrail_10_3390_s22155817 crossref_primary_10_3390_s22155817 |
| PublicationCentury | 2000 |
| PublicationDate | 20220804 |
| PublicationDateYYYYMMDD | 2022-08-04 |
| PublicationDate_xml | – month: 8 year: 2022 text: 20220804 day: 4 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_36 ref_13 ref_35 ref_34 ref_11 ref_33 ref_10 ref_32 ref_31 ref_30 ref_19 ref_18 ref_17 ref_16 ref_15 ref_37 He (ref_12) 2015; 37 ref_25 ref_24 ref_23 Tong (ref_38) 2020; 97 ref_22 ref_21 ref_20 ref_1 ref_3 ref_2 ref_29 ref_28 ref_27 ref_26 ref_9 ref_8 ref_5 ref_4 ref_7 Ren (ref_14) 2015; 28 ref_6 |
| References_xml | – ident: ref_28 doi: 10.1109/CVPR52729.2023.00721 – ident: ref_8 doi: 10.1109/CVPR.2018.00418 – ident: ref_17 doi: 10.1109/CVPR.2017.690 – ident: ref_11 doi: 10.1109/CVPR.2014.81 – ident: ref_4 doi: 10.1109/ICCVW54120.2021.00312 – volume: 37 start-page: 1904 year: 2015 ident: ref_12 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – ident: ref_15 doi: 10.1109/ICCV.2017.322 – ident: ref_24 doi: 10.1109/CVPR.2019.00720 – ident: ref_37 – ident: ref_23 doi: 10.1109/CVPR.2017.106 – ident: ref_5 doi: 10.1109/ICCVW.2019.00011 – ident: ref_18 – ident: ref_31 doi: 10.1109/ICPR.2006.479 – ident: ref_21 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_6 doi: 10.3390/e24040487 – ident: ref_26 doi: 10.1109/CVPR.2018.00913 – ident: ref_16 doi: 10.1109/CVPR.2016.91 – ident: ref_9 doi: 10.1109/CVPR.2009.5206848 – ident: ref_35 doi: 10.1109/WACV45572.2020.9093394 – ident: ref_25 – ident: ref_30 doi: 10.1109/SLT48900.2021.9383531 – ident: ref_36 doi: 10.1109/TPAMI.2021.3119563 – ident: ref_29 doi: 10.1109/CVPR.2017.634 – ident: ref_1 doi: 10.3390/s22135012 – ident: ref_10 doi: 10.1007/978-3-319-10602-1_48 – ident: ref_34 doi: 10.1109/CVPR.2019.00075 – volume: 28 start-page: 91 year: 2015 ident: ref_14 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_33 doi: 10.1109/CVPR.2016.596 – ident: ref_27 doi: 10.1109/CVPR42600.2020.01079 – ident: ref_22 doi: 10.1109/CVPR.2018.00377 – ident: ref_7 doi: 10.1109/CVPR.2019.00533 – ident: ref_19 – ident: ref_13 doi: 10.1109/ICCV.2015.169 – ident: ref_3 doi: 10.3390/e23111437 – ident: ref_32 doi: 10.1109/CVPRW50498.2020.00203 – ident: ref_20 – volume: 97 start-page: 103910 year: 2020 ident: ref_38 article-title: Recent advances in small object detection based on deep learning: A review publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2020.103910 – ident: ref_2 doi: 10.1109/WACV45572.2020.9093445 |
| SSID | ssj0023338 |
| Score | 2.6758275 |
| Snippet | In the research of computer vision, a very challenging problem is the detection of small objects. The existing detection algorithms often focus on detecting... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 5817 |
| SubjectTerms | Ability tests Accuracy Algorithms Computer vision object detection segmentation and categorization small object visual tracking YOLO |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYqxKEcKqCghpdM1QOXFevYa-9yS4CIQ5RUopXoabV-lUhhg5IN_H1mvJs0KyH1wm1lz8E7M_Y8PP6GkB-F7cbWSxPB0SciIbmKMnyoKzNwHrhhLCsCZP5QjUbpw0P2c6PVF9aE1fDANeMufeq1EyYFS5cKxqT2Gp0UCx-FdYnH0zdW2SqYakItDpFXjSPEIai_XHTBsiVp6Er2z_oEkP6WZ9mui9wwNINd8qXxEGmvXtke-eTKfbKzgRv4leT3g-jPeDh-Sa5ojw4xvn4NKU56_1RMp3SsMbtCb1wVCq1K2pv-nc0n1eMT7YPVshSG6mwCfKMTuJw7Olhi4oxic7QD8ntw--v6Lmo6JUQGDHYVMS_ArlhmmLDcIiQXB9FwwxXwiKcpM1or62TspXLMeKOFjCGSMEXilQYf7pBslbPSfSM08SC5wmZOylgw5wvNuZUmMVZ5Bv5Ah1ysOJibBkYcu1lMcwgnkNn5mtkd8n1N-lxjZ7xH1EcxrAkQ7joMgBLkjRLk_1OCDjlZCTFv9uAixyt1pTKZwZrP19Owe_BKpCjdbBloMMZVQnSIagm_taD2TDl5DDjcCCUIJ-LRR_zBMfncxYcVWIwiTshWNV-6U7JtXqrJYn4WlPsNA1YB2w priority: 102 providerName: Directory of Open Access Journals |
| Title | SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode |
| URI | https://www.proquest.com/docview/2700779698 https://www.proquest.com/docview/2702184744 https://pubmed.ncbi.nlm.nih.gov/PMC9371183 https://doaj.org/article/f8fbe4c874384116bfb1615d6bfade5f |
| Volume | 22 |
| WOSCitedRecordID | wos000839985700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELag5QCH8qxYKJFBHLisGsdee5cLSiARSGkSUZDS02r9aiulm5Js2hu_nRlnk3QlxIWLZdkjeVcz9jw8_oaQ94XttK2XJoajT8RCchVn-FBXZmA8cMNYVgTI_KEajdLpNJvUAbdlnVa5ORPDQW3nBmPkx3hBqlQms_TT9a8Yq0bh7WpdQuM-2cey2SjnarpzuDj4X2s0IQ6u_fGyA_otSUNtsp0OClD9DfuymR15R90MHv_vhz4hB7WhSbtryXhK7rnyGXl0B37wOclPB_HZeDi-ST7SLh2im34bIqX09KqYzehYY5CGfnFVyNcqaXd2DitVF1e0B8rPUhhaByWgj7bkauHoYIXxN4o11l6Qn4P-j89f47rgQmxA71cx8wLUk2WGCcstIntx4DA3XBXW8TRlRmtlnWx7qRwz3mgh2-CQmCLxSoMpeEj2ynnpXhKaeBCAwmZOyrZgzheacytNYqzyDMyKiHzYsCA3NRo5FsWY5eCVILfyLbci8m5Ler2G4PgbUQ_5uCVA1OwwMF-c5_UmzH3qtRMmBaspFYxJ7TUavBY68IOJj8jRhqV5vZWX-Y6fEXm7nYZNiDcrRenmq0CDrrISIiKqIT2ND2rOlJcXAc4bEQnhYH3178Vfk4cdfHmB2SriiOxVi5V7Qx6Ym-pyuWgFuQ9t2iL7vf5o8r0VwgvQnvzuw9jk28nk7A_DFhUR |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFB5KFdSHesfUqqMo-BKayUxmEkFka11aGneFVtg-xWQubWGbrXtp8U_5Gz0nl90GxLc--DZMhiQn8-XcZuY7hLzNTRgYJ7UPqk_4QnLlJ3hQVybgPHDNWJJXlPmpGgzi0Sj5tkZ-t2dhcFtlqxMrRW0mGnPk27hAqlQik_jTxU8fq0bh6mpbQqOGxYH9dQUh2-zj_i7M77sw7H85-rznN1UFfA3Gbe4zJ0AHG6aZMNwgfRUHMbjmKjeWxzHTRaGMlYGTyjLtdCFkAF63ziOnCobkS6Dyb8E9FAZ7arQK8DjEezV7EedJsD0LwZ5GcVULbWXzqtIAHX-2uxvzmnnr3__fPswDstE40rRXI_8hWbPlI3LvGr3iY5Id9v3jYTq8jD7QHk0xDXFVZYLp4Xk-HtNhgUkoumvn1X60kvbGJyDZ_PSc7oBxNxS66qQLtNFXXkwt7S8wv0ixhtwT8v1GJHxK1stJaZ8RGjkAeG4SK2UgmHV5wbmROtJGOQZuk0fet1Oe6YZtHYt-jDOIuhAd2RIdHnmzHHpRU4z8bdAO4mY5AFnBq47J9CRrlEzmYldYoWPwCmPBmCxcgQ69gQYIGDmPbLUQyhpVNctW-PHI6-VlUDK4cpSXdrKoxmAqQAnhEdVBa-eFulfKs9OKrhwZF8FwbP774a_Inb2jr2mW7g8OnpO7IZ4ywZ05Yousz6cL-4Lc1pfzs9n0ZfXPUfLjprH8B8qRbPo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKUJw4I0IFFgQSFyseL3rXRsJoZQQETUkkQpSezL2PtpKqVPyaMVf49cx4zhpIyFuPXCz7JXs9X478-3s7DcAb3IbhdYrE6Dpk4FUQgcpHdRVKZIHYThP80oyv68Hg-TgIB1twe_VWRhKq1zZxMpQ24mhGHmLNki1TlWatHydFjHqdD-e_QyoghTttK7KaSwhsud-XeDybfah18GxfhtF3c_fPn0J6goDgUFHNw-4l2iPLTdcWmFJykpgl4QROrdOJAk3RaGtU6FX2nHjTSFViAzc5LHXBSchJjT_20jJZdSA7VHv6-hwvdwTuPpbahkJkYatWYTeNU6qymiXHrAqFLDBbjdzM684u-7d__k33YM7NcVm7eWcuA9brnwAt68ILz6EbL8bHA77w_P4PWuzPgUoLqoYMds_zcdjNiwoPMU6bl5lqpWsPT7Cns2PT9kuun3L8NYyHIPXxKIXU8e6C4o8Mqou9wi-X0sPH0OjnJTuCbDYI_RzmzqlQsmdzwshrDKxsdpzJFRNeLca_szUOuxUDmSc4XqMkJKtkdKE1-umZ0vxkb812iUMrRuQXnh1YzI9ymrzk_nEF06aBPliIjlXhS-I6lu8wA7Gvgk7KzhltRGbZZdYasKr9WM0P7SnlJdusqjaUJBAS9kEvYHcjQ_afFKeHFdC5qTFiC7l6b9f_hJuIoSzfm-w9wxuRXT8hFJ25A405tOFew43zPn8ZDZ9UU9ABj-uG8x_AK4Ld0k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SF-YOLOv5%3A+A+Lightweight+Small+Object+Detection+Algorithm+Based+on+Improved+Feature+Fusion+Mode&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Haiying&rft.au=Sun%2C+Fengqian&rft.au=Gu%2C+Jason&rft.au=Deng%2C+Lixia&rft.date=2022-08-04&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=15&rft_id=info:doi/10.3390%2Fs22155817&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |