Crosstalk between Cell Adhesion Complexes in Regulation of Mechanotransduction
Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin‐containing focal adhesions and cadherin‐containing adherens junctions. Crossta...
Uložené v:
| Vydané v: | BioEssays Ročník 42; číslo 11; s. e2000119 - n/a |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Wiley Subscription Services, Inc
01.11.2020
|
| Predmet: | |
| ISSN: | 0265-9247, 1521-1878, 1521-1878 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin‐containing focal adhesions and cadherin‐containing adherens junctions. Crosstalk between these complexes is well established and modulates the mechanical landscape of the cell. However, integrins and cadherins constitute large families of adhesion receptors and form multiple complexes by interacting with different ligands, adaptor proteins, and cytoskeletal filaments. Recent findings indicate that integrin‐containing hemidesmosomes oppose force transduction and traction force generation by focal adhesions. The cytolinker plectin mediates this crosstalk by coupling intermediate filaments to the actin cytoskeleton. Similarly, cadherins in desmosomes might modulate force generation by adherens junctions. Moreover, mechanotransduction can be influenced by podosomes, clathrin lattices, and tetraspanin‐enriched microdomains. This review discusses mechanotransduction by multiple integrin‐ and cadherin‐based cell adhesion complexes, which together with the associated cytoskeleton form an integrated network that allows cells to sense, process, and respond to their physical environment.
Cells assemble integrin‐ and cadherin‐containing adhesions that mediate interactions with the extracellular matrix and neighboring cells, respectively. In this review, the extensive crosstalk between distinct cell adhesions that regulates mechanotransduction is discussed. |
|---|---|
| AbstractList | Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin‐containing focal adhesions and cadherin‐containing adherens junctions. Crosstalk between these complexes is well established and modulates the mechanical landscape of the cell. However, integrins and cadherins constitute large families of adhesion receptors and form multiple complexes by interacting with different ligands, adaptor proteins, and cytoskeletal filaments. Recent findings indicate that integrin‐containing hemidesmosomes oppose force transduction and traction force generation by focal adhesions. The cytolinker plectin mediates this crosstalk by coupling intermediate filaments to the actin cytoskeleton. Similarly, cadherins in desmosomes might modulate force generation by adherens junctions. Moreover, mechanotransduction can be influenced by podosomes, clathrin lattices, and tetraspanin‐enriched microdomains. This review discusses mechanotransduction by multiple integrin‐ and cadherin‐based cell adhesion complexes, which together with the associated cytoskeleton form an integrated network that allows cells to sense, process, and respond to their physical environment. Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin‐containing focal adhesions and cadherin‐containing adherens junctions. Crosstalk between these complexes is well established and modulates the mechanical landscape of the cell. However, integrins and cadherins constitute large families of adhesion receptors and form multiple complexes by interacting with different ligands, adaptor proteins, and cytoskeletal filaments. Recent findings indicate that integrin‐containing hemidesmosomes oppose force transduction and traction force generation by focal adhesions. The cytolinker plectin mediates this crosstalk by coupling intermediate filaments to the actin cytoskeleton. Similarly, cadherins in desmosomes might modulate force generation by adherens junctions. Moreover, mechanotransduction can be influenced by podosomes, clathrin lattices, and tetraspanin‐enriched microdomains. This review discusses mechanotransduction by multiple integrin‐ and cadherin‐based cell adhesion complexes, which together with the associated cytoskeleton form an integrated network that allows cells to sense, process, and respond to their physical environment. Cells assemble integrin‐ and cadherin‐containing adhesions that mediate interactions with the extracellular matrix and neighboring cells, respectively. In this review, the extensive crosstalk between distinct cell adhesions that regulates mechanotransduction is discussed. Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin-containing focal adhesions and cadherin-containing adherens junctions. Crosstalk between these complexes is well established and modulates the mechanical landscape of the cell. However, integrins and cadherins constitute large families of adhesion receptors and form multiple complexes by interacting with different ligands, adaptor proteins, and cytoskeletal filaments. Recent findings indicate that integrin-containing hemidesmosomes oppose force transduction and traction force generation by focal adhesions. The cytolinker plectin mediates this crosstalk by coupling intermediate filaments to the actin cytoskeleton. Similarly, cadherins in desmosomes might modulate force generation by adherens junctions. Moreover, mechanotransduction can be influenced by podosomes, clathrin lattices, and tetraspanin-enriched microdomains. This review discusses mechanotransduction by multiple integrin- and cadherin-based cell adhesion complexes, which together with the associated cytoskeleton form an integrated network that allows cells to sense, process, and respond to their physical environment.Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin-containing focal adhesions and cadherin-containing adherens junctions. Crosstalk between these complexes is well established and modulates the mechanical landscape of the cell. However, integrins and cadherins constitute large families of adhesion receptors and form multiple complexes by interacting with different ligands, adaptor proteins, and cytoskeletal filaments. Recent findings indicate that integrin-containing hemidesmosomes oppose force transduction and traction force generation by focal adhesions. The cytolinker plectin mediates this crosstalk by coupling intermediate filaments to the actin cytoskeleton. Similarly, cadherins in desmosomes might modulate force generation by adherens junctions. Moreover, mechanotransduction can be influenced by podosomes, clathrin lattices, and tetraspanin-enriched microdomains. This review discusses mechanotransduction by multiple integrin- and cadherin-based cell adhesion complexes, which together with the associated cytoskeleton form an integrated network that allows cells to sense, process, and respond to their physical environment. |
| Author | Wang, Wei Sonnenberg, Arnoud Zuidema, Alba |
| Author_xml | – sequence: 1 givenname: Alba surname: Zuidema fullname: Zuidema, Alba organization: The Netherlands Cancer Institute – sequence: 2 givenname: Wei surname: Wang fullname: Wang, Wei organization: The Netherlands Cancer Institute – sequence: 3 givenname: Arnoud orcidid: 0000-0001-9585-468X surname: Sonnenberg fullname: Sonnenberg, Arnoud email: a.sonnenberg@nki.nl organization: The Netherlands Cancer Institute |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32830356$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1P3DAQhi1EVRbaK8cqUi-9ZLHHdpI50hUFJCgShbPltScQmo23cSLKv6_D8iEhVZxsj55nNH5nl213oSPG9gWfC87hYNlQnAMHzrkQuMVmQoPIRVVW22zGodA5gip32G6Md4nBAtRHtiOhklzqYsZ-LvoQ42Db39mShnuiLltQ22aH_pZiE9IrrNYt_aWYNV12STdja4epHursnNyt7cLQ2y760U3lT-xDbdtIn5_OPXb94-hqcZKfXRyfLg7PcqcFYI5YI1onUXlArEpvFfmlt1pqQsuxqnydZlelrYUnqJW3JeoiXS13tQO5x75t-q778GekOJhVE10a3HYUxmhAg5JcJOd9VMmiKjkgT-jXN-hdGPsufSRRGqQoADBRX56ocbkib9Z9s7L9g3kONQFqA7gp255q45rhMbUUVdMawc20OzPtzrzsLmnzN9pz5_8KuBHum5Ye3qHN99OjX6_uP9IOqzs |
| CitedBy_id | crossref_primary_10_1016_j_bioactmat_2022_10_029 crossref_primary_10_4103_1673_5374_346461 crossref_primary_10_1016_j_ijbiomac_2024_133418 crossref_primary_10_1016_j_bea_2024_100143 crossref_primary_10_1016_j_yexcr_2023_113723 crossref_primary_10_1016_j_jid_2021_10_018 crossref_primary_10_3390_cells10123487 crossref_primary_10_3389_fcell_2022_882037 crossref_primary_10_1016_j_ceb_2023_102219 crossref_primary_10_3390_ijms22042130 crossref_primary_10_3390_biom14091186 crossref_primary_10_3390_biomimetics8020146 crossref_primary_10_3390_cells13060495 crossref_primary_10_1016_j_bpj_2022_11_2943 crossref_primary_10_1017_S0033583524000015 crossref_primary_10_3390_ijms222111566 crossref_primary_10_1016_j_jconrel_2021_06_002 crossref_primary_10_3390_biomedicines10092227 crossref_primary_10_63716_guffd_1594101 crossref_primary_10_1016_j_ydbio_2024_07_012 crossref_primary_10_3389_fcell_2022_886702 crossref_primary_10_1186_s12915_025_02113_1 crossref_primary_10_1186_s12915_025_02199_7 crossref_primary_10_1002_bies_202400051 crossref_primary_10_1186_s40824_022_00323_0 crossref_primary_10_1038_s41423_022_00945_3 crossref_primary_10_1038_s41568_020_00329_7 crossref_primary_10_1124_pharmrev_122_000622 crossref_primary_10_1016_j_bioactmat_2022_10_011 crossref_primary_10_1038_s41580_024_00777_1 crossref_primary_10_1044_2024_JSLHR_23_00718 crossref_primary_10_1083_jcb_202303107 crossref_primary_10_3389_fcell_2021_786758 crossref_primary_10_3390_biom12121808 crossref_primary_10_1007_s00249_022_01625_w crossref_primary_10_3390_molecules27092944 crossref_primary_10_1177_00220345211007855 crossref_primary_10_1002_advs_202307929 crossref_primary_10_1016_j_tcb_2022_03_002 crossref_primary_10_3390_biom11060824 crossref_primary_10_1016_j_bioactmat_2022_03_019 crossref_primary_10_3390_cancers16234107 crossref_primary_10_3390_ijms23042118 crossref_primary_10_1038_s42003_025_08210_9 crossref_primary_10_1016_j_expneurol_2024_114994 crossref_primary_10_1016_j_ijbiomac_2023_123426 crossref_primary_10_3390_cells13010096 crossref_primary_10_1038_s43246_024_00444_0 crossref_primary_10_3389_fcell_2025_1569337 crossref_primary_10_3390_cells11132026 crossref_primary_10_1002_1873_3468_14996 crossref_primary_10_3390_cells11081318 crossref_primary_10_3390_ijms22042193 crossref_primary_10_1038_s41580_022_00531_5 crossref_primary_10_1186_s12964_024_01835_z crossref_primary_10_3390_biomedicines11071995 crossref_primary_10_1016_j_ceb_2021_05_006 crossref_primary_10_3390_ijms23179785 crossref_primary_10_1096_fj_202300222R crossref_primary_10_1016_j_matbio_2024_11_005 crossref_primary_10_3389_fcell_2022_886569 crossref_primary_10_1016_j_aninu_2025_04_007 crossref_primary_10_3389_fcell_2024_1452463 crossref_primary_10_1242_dev_201013 crossref_primary_10_1242_jcs_261532 crossref_primary_10_3389_fcvm_2021_804934 crossref_primary_10_1242_jcs_261899 crossref_primary_10_26508_lsa_202302196 crossref_primary_10_1242_jcs_259465 crossref_primary_10_3390_cancers15235497 |
| Cites_doi | 10.1073/pnas.0510774103 10.1007/s10974-019-09529-7 10.1242/jcs.172056 10.1126/science.1162912 10.1038/s41598-017-11017-2 10.1016/j.bpj.2017.06.064 10.1038/jid.2013.154 10.1016/j.ejcb.2008.02.012 10.1242/jcs.154906 10.1074/jbc.M114.600502 10.1016/j.eml.2017.12.002 10.1016/j.tcb.2018.12.002 10.1038/ncb3268 10.1083/jcb.200306067 10.1038/jid.2009.17 10.1083/jcb.201609037 10.1016/j.tcb.2018.01.008 10.1083/jcb.200506152 10.1371/journal.pone.0195124 10.1242/jcs.221317 10.1016/j.jsb.2016.07.009 10.1038/s41467-019-12304-4 10.1002/bies.201600123 10.1371/journal.pone.0106999 10.1038/s41563-019-0371-y 10.1074/mcp.RA118.001095 10.1111/boc.201700060 10.1083/jcb.201801162 10.1126/science.1254211 10.1016/S0092-8674(02)00971-6 10.1038/ncb2216 10.2741/4444 10.1126/science.aal4713 10.3390/cells7070066 10.1074/jbc.M510617200 10.1038/emboj.2009.376 10.1016/j.yexcr.2015.11.026 10.1002/pmic.201600022 10.1091/mbc.E10-07-0580 10.7554/eLife.22264 10.1038/s41467-019-13123-3 10.1242/jcs.236828 10.1016/j.tcb.2016.03.005 10.1074/jbc.M602116200 10.1242/jcs.064618 10.1073/pnas.1011123108 10.1111/febs.14195 10.1182/blood-2011-03-339531 10.1073/pnas.1220723110 10.1096/fj.13-231829 10.1186/s12915-015-0150-4 10.3389/fcell.2017.00034 10.1038/s41556-018-0220-2 10.1038/s41467-018-06367-y 10.1242/jcs.196881 10.7554/eLife.18124 10.1242/jcs.096214 10.1038/embor.2013.49 10.1002/cbin.10879 10.1038/ncomms6343 10.1152/ajpcell.00604.2008 10.1073/pnas.262791999 10.1038/s41556-018-0223-z 10.1038/bjc.2015.358 10.1158/0008-5472.CAN-16-1483 10.1093/oxfordjournals.jbchem.a124361 10.1038/ncb2747 10.1016/j.devcel.2015.05.005 10.1016/bs.mie.2015.09.009 10.1107/S1399004715002485 10.1101/cshperspect.a005033 10.1007/s00441-014-2061-z 10.1091/mbc.E19-07-0357 10.1242/jcs.045997 10.1083/jcb.201309092 10.1091/mbc.E18-04-0253 10.1038/nrm3141 10.1242/jcs.235366 10.1242/jcs.112.17.2925 10.3389/fcell.2017.00081 10.1083/jcb.200605114 10.1038/nrm3903 10.1074/jbc.M111.314443 10.1038/onc.2013.231 10.1242/jcs.00823 10.1083/jcb.201904137 10.1111/febs.14123 10.1242/jcs.114.23.4143 10.1242/jcs.183699 10.1242/jcs.242404 10.1016/j.str.2010.09.018 10.12688/f1000research.18779.1 10.1083/jcb.201112129 10.1073/pnas.1806275115 10.1242/jcs.172031 10.1073/pnas.77.11.6687 10.4161/cam.3.4.9525 10.1016/B978-0-12-394311-8.00005-4 10.1016/j.semcdb.2017.07.027 10.1083/jcb.201811160 10.1016/j.yexcr.2014.10.001 10.1021/acsnano.7b00622 10.1091/mbc.9.10.2751 10.1038/s41467-018-07523-0 10.1016/j.bpj.2019.01.038 10.1016/j.tcb.2006.05.004 10.1038/ncb3402 10.1128/MCB.21.15.5082-5093.2001 10.1091/mbc.E12-09-0642 10.1038/nrm1736 10.1021/acs.biochem.6b00497 10.1083/jcb.200412081 10.1091/mbc.E14-06-1154 10.1146/annurev.biophys.31.082901.134259 10.1016/j.jbiomech.2007.04.006 10.1091/mbc.12.1.85 10.1111/j.1742-4658.2008.06481.x 10.1242/dev.183780 10.1074/jbc.M110.197467 10.3389/fphys.2018.00824 10.1038/ncomms16068 10.1091/mbc.E18-11-0718 10.1073/pnas.1217279110 10.1111/boc.201600041 10.1038/ncb3036 10.1074/jbc.M008663200 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. published by Wiley Periodicals LLC 2020 The Authors. BioEssays published by Wiley Periodicals LLC. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals LLC – notice: 2020 The Authors. BioEssays published by Wiley Periodicals LLC. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
| DOI | 10.1002/bies.202000119 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Virology and AIDS Abstracts PubMed AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1521-1878 |
| EndPage | n/a |
| ExternalDocumentID | 32830356 10_1002_bies_202000119 BIES202000119 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek – fundername: KWF Kankerbestrijding |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACKIV ACKOT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 C45 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KD1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWR RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UDS V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ XG1 XV2 Y6R YYQ YZZ ZGI ZUP ZXP ZY4 ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X NPM VXZ 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c5129-99f99ac394d29987da4edbda535e9a0988df26547af1de2f4da7956de2a0cfc23 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 89 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000561763000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0265-9247 1521-1878 |
| IngestDate | Fri Jul 11 18:34:45 EDT 2025 Fri Jul 11 08:40:30 EDT 2025 Fri Jul 25 10:50:46 EDT 2025 Wed Feb 19 02:29:26 EST 2025 Sat Nov 29 05:24:45 EST 2025 Tue Nov 18 21:28:27 EST 2025 Wed Jan 22 16:33:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | cell-matrix clathrin tetraspanin mechanotransduction cadherin integrin cell-cell |
| Language | English |
| License | Attribution 2020 The Authors. BioEssays published by Wiley Periodicals LLC. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5129-99f99ac394d29987da4edbda535e9a0988df26547af1de2f4da7956de2a0cfc23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-9585-468X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202000119 |
| PMID | 32830356 |
| PQID | 2452316229 |
| PQPubID | 37030 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2524301956 proquest_miscellaneous_2436870290 proquest_journals_2452316229 pubmed_primary_32830356 crossref_citationtrail_10_1002_bies_202000119 crossref_primary_10_1002_bies_202000119 wiley_primary_10_1002_bies_202000119_BIES202000119 |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Cambridge |
| PublicationTitle | BioEssays |
| PublicationTitleAlternate | Bioessays |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 285 2005; 171 2011; 118 2015; 71 2010; 18 2019; 10 2014; 25 2019; 18 2006; 175 2014; 28 2012; 125 2009; 119 2018; 42 2018; 7 2018; 9 2014; 127 2010; 21 2011; 124 2017; 71 2010; 29 2019; 21 2018; 217 2013; 116 2014; 16 2014; 15 2009; 122 2019; 29 2017; 284 2013; 110 2006; 281 2009; 129 2020; 219 2003; 163 2019; 8 2015; 360 2018; 28 2019; 30 2016; 568 2017; 130 2015; 128 2009; 296 2016; 18 2011; 3 2018; 20 2001; 21 2001; 276 2016; 5 2018; 110 2012; 197 2019; 40 2020; 31 2015; 113 2018; 115 2016; 21 2005; 6 2019; 218 2016; 215 1999; 112 2016; 26 2003; 100 2014; 33 1998; 9 2006; 103 2018; 13 2017; 5 2017; 6 2015; 34 2017; 7 2017; 8 2012; 287 2003; 116 2002; 110 2013; 24 2016; 76 2016; 343 2011; 13 2011; 12 2017; 113 2017; 356 2018; 131 2014; 205 2013; 15 2014; 5 2013; 14 2017; 39 2015; 331 1980; 77 2019; 116 2020; 133 2014; 9 2001; 12 2008; 275 2009; 323 2016; 196 2011; 286 2014; 289 2015; 13 2015; 17 1994; 115 2002; 31 2016; 129 2006; 16 2019; 146 2016; 55 2017; 109 2011; 108 2017; 17 2020 2005; 169 2017; 11 2013; 133 2008; 87 2007; 40 2009; 3 2001; 114 2014; 346 2019; 132 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_29_1 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_102_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 Bijl I. (e_1_2_11_41_1) 2020 e_1_2_11_117_1 e_1_2_11_59_1 e_1_2_11_113_1 e_1_2_11_50_1 e_1_2_11_92_1 Wang Z. (e_1_2_11_123_1) 1999; 112 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_126_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_122_1 e_1_2_11_1_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_110_1 e_1_2_11_39_1 Kim K. K. (e_1_2_11_124_1) 2009; 119 e_1_2_11_72_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_127_1 e_1_2_11_2_1 e_1_2_11_100_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_115_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_38_1 Berditchevski F. (e_1_2_11_91_1) 2001; 114 e_1_2_11_19_1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_120_1 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 e_1_2_11_116_1 e_1_2_11_37_1 e_1_2_11_112_1 |
| References_xml | – volume: 21 start-page: 122 year: 2019 publication-title: Nat. Cell Biol. – volume: 77 start-page: 6687 year: 1980 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 26 start-page: 612 year: 2016 publication-title: Trends Cell Biol. – volume: 132 year: 2019 publication-title: J. Cell Sci. – volume: 119 start-page: 213 year: 2009 publication-title: J. Clin. Invest. – volume: 129 start-page: 2072 year: 2009 publication-title: J. Invest. Dermatol. – volume: 13 year: 2018 publication-title: PLoS One – volume: 13 start-page: 383 year: 2011 publication-title: Nat. Cell Biol. – volume: 18 start-page: 941 year: 2016 publication-title: Nat. Cell Biol. – volume: 114 start-page: 4143 year: 2001 publication-title: J. Cell Sci. – volume: 128 start-page: 3435 year: 2015 publication-title: J. Cell Sci. – volume: 133 year: 2020 publication-title: J. Cell Sci. – volume: 18 start-page: 1654 year: 2010 publication-title: Structure – volume: 284 start-page: 3355 year: 2017 publication-title: FEBS J. – volume: 3 year: 2011 publication-title: Cold Spring Harbor Perspect. Biol. – volume: 9 start-page: 3825 year: 2018 publication-title: Nat. Commun. – volume: 31 start-page: 151 year: 2002 publication-title: Annu. Rev. Biophys. Biomol. Struct. – volume: 21 start-page: 5082 year: 2001 publication-title: Mol. Cell. Biol. – volume: 103 start-page: 1774 year: 2006 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 115 year: 2018 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 287 year: 2012 publication-title: J. Biol. Chem. – volume: 30 start-page: 181 year: 2019 publication-title: Mol. Biol. Cell – volume: 127 start-page: 3641 year: 2014 publication-title: J. Cell Sci. – volume: 76 start-page: 6577 year: 2016 publication-title: Cancer Res. – volume: 215 start-page: 445 year: 2016 publication-title: J. Cell Biol. – volume: 125 start-page: 2172 year: 2012 publication-title: J. Cell Sci. – volume: 21 start-page: 4108 year: 2010 publication-title: Mol. Biol. Cell – volume: 218 start-page: 2086 year: 2019 publication-title: J. Cell Biol. – volume: 331 start-page: 331 year: 2015 publication-title: Exp. Cell Res. – volume: 110 start-page: 673 year: 2002 publication-title: Cell – volume: 110 year: 2013 publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2020 publication-title: Matrix Biol. – volume: 12 start-page: 413 year: 2011 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 133 start-page: 2180 year: 2013 publication-title: J. Invest. Dermatol. – volume: 5 start-page: 34 year: 2017 publication-title: Front. Cell. Dev. Biol. – volume: 15 start-page: 625 year: 2013 publication-title: Nat. Cell Biol. – volume: 343 start-page: 67 year: 2016 publication-title: Exp. Cell Res. – volume: 34 start-page: 33 year: 2015 publication-title: Dev. Cell – volume: 28 start-page: 356 year: 2018 publication-title: Trends Cell Biol. – volume: 15 start-page: 825 year: 2014 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 109 start-page: 127 year: 2017 publication-title: Biol. Cell. – volume: 17 year: 2017 publication-title: Proteomics – volume: 360 start-page: 363 year: 2015 publication-title: Cell Tissue Res. – volume: 346 year: 2014 publication-title: Science – volume: 116 start-page: 95 year: 2013 publication-title: Prog. Mol. Biol. Transl. Sci. – volume: 296 start-page: C868 year: 2009 publication-title: Am. J. Physiol. Cell Physiol. – volume: 25 start-page: 3581 year: 2014 publication-title: Mol. Biol. Cell – volume: 197 start-page: 819 year: 2012 publication-title: J. Cell Biol. – volume: 113 start-page: 948 year: 2017 publication-title: Biophys. J. – volume: 217 start-page: 3031 year: 2018 publication-title: J. Cell Biol. – volume: 276 start-page: 1494 year: 2001 publication-title: J. Biol. Chem. – volume: 9 start-page: 2751 year: 1998 publication-title: Mol. Biol. Cell – volume: 169 start-page: 515 year: 2005 publication-title: J. Cell Biol. – volume: 11 start-page: 4028 year: 2017 publication-title: ACS Nano – volume: 30 start-page: 579 year: 2019 publication-title: Mol. Biol. Cell – volume: 110 start-page: 842 year: 2013 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 116 start-page: 1011 year: 2019 publication-title: Biophys. J. – volume: 100 start-page: 2272 year: 2003 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 146 year: 2019 publication-title: Development – volume: 9 year: 2014 publication-title: PLoS One – volume: 10 start-page: 4507 year: 2019 publication-title: Nat. Commun. – volume: 568 start-page: 35 year: 2016 publication-title: Methods Enzymol. – volume: 219 year: 2020 publication-title: J. Cell Biol. – volume: 7 start-page: 66 year: 2018 publication-title: Cells – volume: 124 start-page: 1183 year: 2011 publication-title: J. Cell Sci. – volume: 323 start-page: 638 year: 2009 publication-title: Science – volume: 356 year: 2017 publication-title: Science – volume: 21 start-page: 1092 year: 2016 publication-title: Front. Biosci. – volume: 6 year: 2017 publication-title: Elife – volume: 18 start-page: 638 year: 2019 publication-title: Nat. Mater. – volume: 40 start-page: 2096 year: 2007 publication-title: J. Biomech. – volume: 9 start-page: 824 year: 2018 publication-title: Front. Physiol. – volume: 12 start-page: 85 year: 2001 publication-title: Mol. Biol. Cell – volume: 115 start-page: 469 year: 1994 publication-title: J. Biochem. – volume: 16 start-page: 376 year: 2006 publication-title: Trends Cell Biol. – volume: 33 start-page: 2779 year: 2014 publication-title: Oncogene – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 118 start-page: 4274 year: 2011 publication-title: Blood – volume: 20 start-page: 125 year: 2018 publication-title: Extreme Mech. Lett. – volume: 8 start-page: 1044 year: 2019 publication-title: F1000Research – volume: 5 start-page: 81 year: 2017 publication-title: Front. Cell Dev. Biol. – volume: 128 start-page: 4138 year: 2015 publication-title: J. Cell Sci. – volume: 196 start-page: 48 year: 2016 publication-title: J. Struct. Biol. – volume: 122 start-page: 2263 year: 2009 publication-title: J. Cell Sci. – volume: 129 start-page: 1093 year: 2016 publication-title: J. Cell Sci. – volume: 16 start-page: 931 year: 2014 publication-title: Nat. Cell Biol. – volume: 9 start-page: 5284 year: 2018 publication-title: Nat. Commun. – volume: 286 year: 2011 publication-title: J. Biol. Chem. – volume: 24 start-page: 261 year: 2013 publication-title: Mol. Biol. Cell – volume: 6 start-page: 801 year: 2005 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 131 year: 2018 publication-title: J. Cell Sci. – volume: 71 start-page: 75 year: 2017 publication-title: Semin. Cell Dev. Biol. – volume: 285 start-page: 8 year: 2018 publication-title: FEBS J. – volume: 29 start-page: 241 year: 2019 publication-title: Trends Cell Biol. – volume: 281 year: 2006 publication-title: J. Biol. Chem. – volume: 42 start-page: 132 year: 2018 publication-title: Cell Biol. Int. – volume: 163 start-page: 1351 year: 2003 publication-title: J. Cell Biol. – volume: 5 start-page: 5343 year: 2014 publication-title: Nat. Commun. – volume: 116 start-page: 4977 year: 2003 publication-title: J. Cell Sci. – volume: 205 start-page: 251 year: 2014 publication-title: J. Cell Biol. – volume: 13 start-page: 47 year: 2015 publication-title: BMC Biol. – volume: 71 start-page: 969 year: 2015 publication-title: Acta Crystallogr., Sect. D: Struct. Biol. – volume: 39 start-page: 1 year: 2017 publication-title: BioEssays – volume: 17 start-page: 1597 year: 2015 publication-title: Nat. Cell Biol. – volume: 113 start-page: 1445 year: 2015 publication-title: Br. J. Cancer – volume: 289 year: 2014 publication-title: J. Biol. Chem. – volume: 5 year: 2016 publication-title: Elife – volume: 28 start-page: 715 year: 2014 publication-title: FASEB J. – volume: 275 start-page: 3335 year: 2008 publication-title: FEBS J. – volume: 3 start-page: 361 year: 2009 publication-title: Cell Adhes. Migr. – volume: 31 start-page: 741 year: 2020 publication-title: Mol. Biol. Cell – volume: 14 start-page: 509 year: 2013 publication-title: EMBO Rep. – volume: 130 start-page: 892 year: 2017 publication-title: J. Cell Sci. – volume: 29 start-page: 281 year: 2010 publication-title: EMBO J. – volume: 110 start-page: 49 year: 2018 publication-title: Biol. Cell. – volume: 87 start-page: 491 year: 2008 publication-title: Eur. J. Cell Biol. – volume: 20 start-page: 1290 year: 2018 publication-title: Nat. Cell Biol. – volume: 55 start-page: 5038 year: 2016 publication-title: Biochemistry – volume: 10 start-page: 5171 year: 2019 publication-title: Nat. Commun. – volume: 40 start-page: 197 year: 2019 publication-title: J. Muscle Res. Cell Motil. – volume: 108 start-page: 4708 year: 2011 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 112 start-page: 2925 year: 1999 publication-title: J. Cell Sci. – volume: 175 start-page: 993 year: 2006 publication-title: J. Cell Biol. – volume: 18 start-page: 277 year: 2019 publication-title: Mol. Cell. Proteomics – volume: 171 start-page: 153 year: 2005 publication-title: J. Cell Biol. – ident: e_1_2_11_107_1 doi: 10.1073/pnas.0510774103 – ident: e_1_2_11_57_1 doi: 10.1007/s10974-019-09529-7 – ident: e_1_2_11_77_1 doi: 10.1242/jcs.172056 – ident: e_1_2_11_32_1 doi: 10.1126/science.1162912 – ident: e_1_2_11_67_1 doi: 10.1038/s41598-017-11017-2 – ident: e_1_2_11_36_1 doi: 10.1016/j.bpj.2017.06.064 – ident: e_1_2_11_122_1 doi: 10.1038/jid.2013.154 – ident: e_1_2_11_52_1 doi: 10.1016/j.ejcb.2008.02.012 – ident: e_1_2_11_18_1 doi: 10.1242/jcs.154906 – ident: e_1_2_11_127_1 doi: 10.1074/jbc.M114.600502 – ident: e_1_2_11_118_1 doi: 10.1016/j.eml.2017.12.002 – ident: e_1_2_11_84_1 doi: 10.1016/j.tcb.2018.12.002 – ident: e_1_2_11_33_1 doi: 10.1038/ncb3268 – ident: e_1_2_11_125_1 doi: 10.1083/jcb.200306067 – ident: e_1_2_11_119_1 doi: 10.1038/jid.2009.17 – ident: e_1_2_11_7_1 doi: 10.1083/jcb.201609037 – ident: e_1_2_11_8_1 doi: 10.1016/j.tcb.2018.01.008 – ident: e_1_2_11_108_1 doi: 10.1083/jcb.200506152 – ident: e_1_2_11_120_1 doi: 10.1371/journal.pone.0195124 – ident: e_1_2_11_89_1 doi: 10.1242/jcs.221317 – ident: e_1_2_11_16_1 doi: 10.1016/j.jsb.2016.07.009 – ident: e_1_2_11_53_1 doi: 10.1038/s41467-019-12304-4 – ident: e_1_2_11_112_1 doi: 10.1002/bies.201600123 – ident: e_1_2_11_102_1 doi: 10.1371/journal.pone.0106999 – ident: e_1_2_11_59_1 doi: 10.1038/s41563-019-0371-y – ident: e_1_2_11_78_1 doi: 10.1074/mcp.RA118.001095 – ident: e_1_2_11_10_1 doi: 10.1111/boc.201700060 – ident: e_1_2_11_64_1 doi: 10.1083/jcb.201801162 – ident: e_1_2_11_106_1 doi: 10.1126/science.1254211 – ident: e_1_2_11_9_1 doi: 10.1016/S0092-8674(02)00971-6 – ident: e_1_2_11_43_1 doi: 10.1038/ncb2216 – ident: e_1_2_11_50_1 doi: 10.2741/4444 – ident: e_1_2_11_88_1 doi: 10.1126/science.aal4713 – ident: e_1_2_11_117_1 doi: 10.3390/cells7070066 – ident: e_1_2_11_105_1 doi: 10.1074/jbc.M510617200 – ident: e_1_2_11_38_1 doi: 10.1038/emboj.2009.376 – ident: e_1_2_11_11_1 doi: 10.1016/j.yexcr.2015.11.026 – ident: e_1_2_11_24_1 doi: 10.1002/pmic.201600022 – ident: e_1_2_11_48_1 doi: 10.1091/mbc.E10-07-0580 – ident: e_1_2_11_28_1 doi: 10.7554/eLife.22264 – ident: e_1_2_11_55_1 doi: 10.1038/s41467-019-13123-3 – ident: e_1_2_11_56_1 doi: 10.1242/jcs.236828 – ident: e_1_2_11_3_1 doi: 10.1016/j.tcb.2016.03.005 – ident: e_1_2_11_104_1 doi: 10.1074/jbc.M602116200 – ident: e_1_2_11_111_1 doi: 10.1242/jcs.064618 – ident: e_1_2_11_109_1 doi: 10.1073/pnas.1011123108 – ident: e_1_2_11_23_1 doi: 10.1111/febs.14195 – year: 2020 ident: e_1_2_11_41_1 publication-title: Matrix Biol. – ident: e_1_2_11_99_1 doi: 10.1182/blood-2011-03-339531 – ident: e_1_2_11_35_1 doi: 10.1073/pnas.1220723110 – ident: e_1_2_11_79_1 doi: 10.1096/fj.13-231829 – ident: e_1_2_11_2_1 doi: 10.1186/s12915-015-0150-4 – ident: e_1_2_11_90_1 doi: 10.3389/fcell.2017.00034 – ident: e_1_2_11_87_1 doi: 10.1038/s41556-018-0220-2 – ident: e_1_2_11_85_1 doi: 10.1038/s41467-018-06367-y – ident: e_1_2_11_75_1 doi: 10.1242/jcs.196881 – ident: e_1_2_11_58_1 doi: 10.7554/eLife.18124 – ident: e_1_2_11_40_1 doi: 10.1242/jcs.096214 – ident: e_1_2_11_42_1 doi: 10.1038/embor.2013.49 – ident: e_1_2_11_65_1 doi: 10.1002/cbin.10879 – ident: e_1_2_11_51_1 doi: 10.1038/ncomms6343 – ident: e_1_2_11_80_1 doi: 10.1152/ajpcell.00604.2008 – ident: e_1_2_11_37_1 doi: 10.1073/pnas.262791999 – ident: e_1_2_11_44_1 doi: 10.1038/s41556-018-0223-z – ident: e_1_2_11_126_1 doi: 10.1038/bjc.2015.358 – ident: e_1_2_11_98_1 doi: 10.1158/0008-5472.CAN-16-1483 – ident: e_1_2_11_61_1 doi: 10.1093/oxfordjournals.jbchem.a124361 – ident: e_1_2_11_26_1 doi: 10.1038/ncb2747 – ident: e_1_2_11_128_1 doi: 10.1016/j.devcel.2015.05.005 – ident: e_1_2_11_66_1 doi: 10.1016/bs.mie.2015.09.009 – ident: e_1_2_11_70_1 doi: 10.1107/S1399004715002485 – ident: e_1_2_11_5_1 doi: 10.1101/cshperspect.a005033 – ident: e_1_2_11_14_1 doi: 10.1007/s00441-014-2061-z – ident: e_1_2_11_121_1 doi: 10.1091/mbc.E19-07-0357 – ident: e_1_2_11_101_1 doi: 10.1242/jcs.045997 – ident: e_1_2_11_114_1 doi: 10.1083/jcb.201309092 – ident: e_1_2_11_30_1 doi: 10.1091/mbc.E18-04-0253 – ident: e_1_2_11_46_1 doi: 10.1038/nrm3141 – ident: e_1_2_11_62_1 doi: 10.1242/jcs.235366 – volume: 112 start-page: 2925 year: 1999 ident: e_1_2_11_123_1 publication-title: J. Cell Sci. doi: 10.1242/jcs.112.17.2925 – ident: e_1_2_11_63_1 doi: 10.3389/fcell.2017.00081 – ident: e_1_2_11_73_1 doi: 10.1083/jcb.200605114 – ident: e_1_2_11_1_1 doi: 10.1038/nrm3903 – ident: e_1_2_11_96_1 doi: 10.1074/jbc.M111.314443 – ident: e_1_2_11_100_1 doi: 10.1038/onc.2013.231 – volume: 119 start-page: 213 year: 2009 ident: e_1_2_11_124_1 publication-title: J. Clin. Invest. – ident: e_1_2_11_82_1 doi: 10.1242/jcs.00823 – ident: e_1_2_11_74_1 doi: 10.1083/jcb.201904137 – ident: e_1_2_11_47_1 doi: 10.1111/febs.14123 – volume: 114 start-page: 4143 year: 2001 ident: e_1_2_11_91_1 publication-title: J. Cell Sci. doi: 10.1242/jcs.114.23.4143 – ident: e_1_2_11_21_1 doi: 10.1242/jcs.183699 – ident: e_1_2_11_29_1 doi: 10.1242/jcs.242404 – ident: e_1_2_11_34_1 doi: 10.1016/j.str.2010.09.018 – ident: e_1_2_11_20_1 doi: 10.12688/f1000research.18779.1 – ident: e_1_2_11_115_1 doi: 10.1083/jcb.201112129 – ident: e_1_2_11_93_1 doi: 10.1073/pnas.1806275115 – ident: e_1_2_11_113_1 doi: 10.1242/jcs.172031 – ident: e_1_2_11_45_1 doi: 10.1073/pnas.77.11.6687 – ident: e_1_2_11_13_1 doi: 10.4161/cam.3.4.9525 – ident: e_1_2_11_22_1 doi: 10.1016/B978-0-12-394311-8.00005-4 – ident: e_1_2_11_6_1 doi: 10.1016/j.semcdb.2017.07.027 – ident: e_1_2_11_17_1 doi: 10.1083/jcb.201811160 – ident: e_1_2_11_76_1 doi: 10.1016/j.yexcr.2014.10.001 – ident: e_1_2_11_54_1 doi: 10.1021/acsnano.7b00622 – ident: e_1_2_11_92_1 doi: 10.1091/mbc.9.10.2751 – ident: e_1_2_11_116_1 doi: 10.1038/s41467-018-07523-0 – ident: e_1_2_11_39_1 doi: 10.1016/j.bpj.2019.01.038 – ident: e_1_2_11_12_1 doi: 10.1016/j.tcb.2006.05.004 – ident: e_1_2_11_60_1 doi: 10.1038/ncb3402 – ident: e_1_2_11_71_1 doi: 10.1128/MCB.21.15.5082-5093.2001 – ident: e_1_2_11_103_1 doi: 10.1091/mbc.E12-09-0642 – ident: e_1_2_11_19_1 doi: 10.1038/nrm1736 – ident: e_1_2_11_95_1 doi: 10.1021/acs.biochem.6b00497 – ident: e_1_2_11_25_1 doi: 10.1083/jcb.200412081 – ident: e_1_2_11_15_1 doi: 10.1091/mbc.E14-06-1154 – ident: e_1_2_11_94_1 doi: 10.1146/annurev.biophys.31.082901.134259 – ident: e_1_2_11_31_1 doi: 10.1016/j.jbiomech.2007.04.006 – ident: e_1_2_11_81_1 doi: 10.1091/mbc.12.1.85 – ident: e_1_2_11_97_1 doi: 10.1111/j.1742-4658.2008.06481.x – ident: e_1_2_11_68_1 doi: 10.1242/dev.183780 – ident: e_1_2_11_69_1 doi: 10.1074/jbc.M110.197467 – ident: e_1_2_11_4_1 doi: 10.3389/fphys.2018.00824 – ident: e_1_2_11_83_1 doi: 10.1038/ncomms16068 – ident: e_1_2_11_86_1 doi: 10.1091/mbc.E18-11-0718 – ident: e_1_2_11_110_1 doi: 10.1073/pnas.1217279110 – ident: e_1_2_11_27_1 doi: 10.1111/boc.201600041 – ident: e_1_2_11_49_1 doi: 10.1038/ncb3036 – ident: e_1_2_11_72_1 doi: 10.1074/jbc.M008663200 |
| SSID | ssj0009624 |
| Score | 2.5923579 |
| SecondaryResourceType | review_article |
| Snippet | Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2000119 |
| SubjectTerms | Actin Adaptor proteins Adherens junctions Adhesion Biological activity cadherin Cadherins Cell adhesion Cell adhesion & migration cell‐matrix cell–cell Clathrin Crosstalk Cytoskeleton Desmosomes Filaments Hemidesmosomes integrin Integrins Intermediate filaments landscapes Lattices ligands Mechanotransduction microfilaments physiology tetraspanin Traction force |
| Title | Crosstalk between Cell Adhesion Complexes in Regulation of Mechanotransduction |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202000119 https://www.ncbi.nlm.nih.gov/pubmed/32830356 https://www.proquest.com/docview/2452316229 https://www.proquest.com/docview/2436870290 https://www.proquest.com/docview/2524301956 |
| Volume | 42 |
| WOSCitedRecordID | wos000561763000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-1878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009624 issn: 0265-9247 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6tIO9bN26blk_cKHQJ1Nbkm3pccsW-tCGUlbIm5H1QUODM5p0bP_97izHaRjtYH0Rsu8Eh6TT3cm-3wEcF7kx3koVC5FhI3URK6NFnDAlfJ5wz6smUfi8GI3keKwuH2TxB3yI7sKNNKM5r0nBdTU_XYGGVhRJYujeeDXqBWymKS9oXzNxuYLdzZuythhoZDFGGsUStjFhp-vj183SX77muuva2J7hm-dLvQ2vW78z-hw2ylvYcPU7eBkqUf7egdGAxEJH_DZq_9yKBm6K_PbG0X1aROfG1P1y82hSR1ehgD29n_nowlH28GxBVs8GMNr3cD389n1wFrelFmJDFj9WyiulDVfCon2ShdXC2crqjGdO6URJaT2jOsXap9YxL6wuMLLCrk6MN4zvQq-e1e4jRKnInK-kdN4bgc6FZrlPpXGs4lZpkfUhXs50aVocciqHMS0DgjIraY7Kbo76cNLx_wgIHI9y7i8Xrmw1EakCQ-00ZwzJRx0ZdYg-jOjaze6Jh-d4bjGVPMGTIVeTXdmHD2FTdOJwQlHjRGHN2v9DzvILevrd06f_GbQHr6gfkiL3obe4u3cHsGV-Libzu8NGB7AtxvIQNr9eDa_P_wAswAgQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEB_8RF_uTj3v1q-rIPhUtpukbfLoLSeK6yKi4FtJ84FyS_fQ9bj7751pupVFVDjupbSZCQxJJjOTZn4DcJBnxngrVSxEig-p81gZLeKEKeGzhHte1onCg3w4lDc36qK5TUi5MAEfoj1wI82o92tScDqQ7j6jhpYUSmLsXrs1ah4WBZomutXHxMUz7m5W17XFSCONMdTIp7iNCevO9p-1Sy-czVnftTY-xx__g9if4EPjeUZHYamswZyr1mE51KL8uwHDPsmFrvjPqLm7FfXdCPntraMTtYh2jpH74x6iuyq6DCXsqX3so3NH-cPjCdk9G-BoP8P18Y-r_kncFFuIDdn8WCmvlDZcCYsWSuZWC2dLq1OeOqUTJaX1jCoVa9-zjnlhdY6xFb7qxHjD-CYsVOPKfYWoJ1LnSymd90age6FZ5nvSOFZyq7RIOxBPh7owDRI5FcQYFQFDmRU0RkU7Rh04bPl_BQyOVzl3pjNXNLqIVIHBdi9jDMn7LRm1iH6N6MqNH4mHZ7hzMZW8wZMiV51f2YEvYVW04nDCUeNEYfXkvyNn8R19_fZr6186fYOVk6vzQTE4HZ5twyq1hxTJHViY3D-6XVgyvyd3D_d7tUI8AV-QCWw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB9a24ov1dqqZ7XdQqFPi3tJdjd5tFcPpXocpQXflmw-qHjsiZ6i_70zyd7KUVqh-LLsZiYwJJnMTDbzG4DPZWGMt1KlQuT4kLpMldEizZgSvsi453VIFD4uRyN5eqrG7W1CyoWJ-BDdgRtpRtivScHdhfV7D6ihNYWSGLsHt0Y9hxciL4NuMjF-wN0tQl1bjDTyFEONco7bmLG9xf6LdukPZ3PRdw3GZ7j6BGKvwevW80z241J5A89csw6vYi3Ku7cwGpBc6IqfJ-3drWTgJshvfzs6UUto55i4W3eVnDXJj1jCntqnPjlxlD88nZHdsxGO9h38Gh78HBymbbGF1JDNT5XySmnDlbBooWRptXC2tjrnuVM6U1Jaz6hSsfZ965gXVpcYW-Grzow3jG_AUjNt3BYkfZE7X0vpvDcC3QvNCt-XxrGaW6VF3oN0PtSVaZHIqSDGpIoYyqyiMaq6MerBl47_ImJw_JVzZz5zVauLSBUYbPcLxpD8qSOjFtGvEd246TXx8AJ3Lqayf_DkyBXyK3uwGVdFJw4nHDVOFBYm_xE5q6_o63df2__T6SMsj78Nq-Oj0ff3sELNMUNyB5Zml9duF16am9nZ1eWHoA_32vwI5w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crosstalk+between+Cell+Adhesion+Complexes+in+Regulation+of+Mechanotransduction&rft.jtitle=BioEssays&rft.au=Zuidema%2C+Alba&rft.au=Wang%2C+Wei&rft.au=Sonnenberg%2C+Arnoud&rft.date=2020-11-01&rft.issn=0265-9247&rft.eissn=1521-1878&rft.volume=42&rft.issue=11&rft_id=info:doi/10.1002%2Fbies.202000119&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bies_202000119 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon |