Crosstalk between Cell Adhesion Complexes in Regulation of Mechanotransduction

Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin‐containing focal adhesions and cadherin‐containing adherens junctions. Crossta...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BioEssays Ročník 42; číslo 11; s. e2000119 - n/a
Hlavní autori: Zuidema, Alba, Wang, Wei, Sonnenberg, Arnoud
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Wiley Subscription Services, Inc 01.11.2020
Predmet:
ISSN:0265-9247, 1521-1878, 1521-1878
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin‐containing focal adhesions and cadherin‐containing adherens junctions. Crosstalk between these complexes is well established and modulates the mechanical landscape of the cell. However, integrins and cadherins constitute large families of adhesion receptors and form multiple complexes by interacting with different ligands, adaptor proteins, and cytoskeletal filaments. Recent findings indicate that integrin‐containing hemidesmosomes oppose force transduction and traction force generation by focal adhesions. The cytolinker plectin mediates this crosstalk by coupling intermediate filaments to the actin cytoskeleton. Similarly, cadherins in desmosomes might modulate force generation by adherens junctions. Moreover, mechanotransduction can be influenced by podosomes, clathrin lattices, and tetraspanin‐enriched microdomains. This review discusses mechanotransduction by multiple integrin‐ and cadherin‐based cell adhesion complexes, which together with the associated cytoskeleton form an integrated network that allows cells to sense, process, and respond to their physical environment. Cells assemble integrin‐ and cadherin‐containing adhesions that mediate interactions with the extracellular matrix and neighboring cells, respectively. In this review, the extensive crosstalk between distinct cell adhesions that regulates mechanotransduction is discussed.
AbstractList Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin‐containing focal adhesions and cadherin‐containing adherens junctions. Crosstalk between these complexes is well established and modulates the mechanical landscape of the cell. However, integrins and cadherins constitute large families of adhesion receptors and form multiple complexes by interacting with different ligands, adaptor proteins, and cytoskeletal filaments. Recent findings indicate that integrin‐containing hemidesmosomes oppose force transduction and traction force generation by focal adhesions. The cytolinker plectin mediates this crosstalk by coupling intermediate filaments to the actin cytoskeleton. Similarly, cadherins in desmosomes might modulate force generation by adherens junctions. Moreover, mechanotransduction can be influenced by podosomes, clathrin lattices, and tetraspanin‐enriched microdomains. This review discusses mechanotransduction by multiple integrin‐ and cadherin‐based cell adhesion complexes, which together with the associated cytoskeleton form an integrated network that allows cells to sense, process, and respond to their physical environment.
Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin‐containing focal adhesions and cadherin‐containing adherens junctions. Crosstalk between these complexes is well established and modulates the mechanical landscape of the cell. However, integrins and cadherins constitute large families of adhesion receptors and form multiple complexes by interacting with different ligands, adaptor proteins, and cytoskeletal filaments. Recent findings indicate that integrin‐containing hemidesmosomes oppose force transduction and traction force generation by focal adhesions. The cytolinker plectin mediates this crosstalk by coupling intermediate filaments to the actin cytoskeleton. Similarly, cadherins in desmosomes might modulate force generation by adherens junctions. Moreover, mechanotransduction can be influenced by podosomes, clathrin lattices, and tetraspanin‐enriched microdomains. This review discusses mechanotransduction by multiple integrin‐ and cadherin‐based cell adhesion complexes, which together with the associated cytoskeleton form an integrated network that allows cells to sense, process, and respond to their physical environment. Cells assemble integrin‐ and cadherin‐containing adhesions that mediate interactions with the extracellular matrix and neighboring cells, respectively. In this review, the extensive crosstalk between distinct cell adhesions that regulates mechanotransduction is discussed.
Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin-containing focal adhesions and cadherin-containing adherens junctions. Crosstalk between these complexes is well established and modulates the mechanical landscape of the cell. However, integrins and cadherins constitute large families of adhesion receptors and form multiple complexes by interacting with different ligands, adaptor proteins, and cytoskeletal filaments. Recent findings indicate that integrin-containing hemidesmosomes oppose force transduction and traction force generation by focal adhesions. The cytolinker plectin mediates this crosstalk by coupling intermediate filaments to the actin cytoskeleton. Similarly, cadherins in desmosomes might modulate force generation by adherens junctions. Moreover, mechanotransduction can be influenced by podosomes, clathrin lattices, and tetraspanin-enriched microdomains. This review discusses mechanotransduction by multiple integrin- and cadherin-based cell adhesion complexes, which together with the associated cytoskeleton form an integrated network that allows cells to sense, process, and respond to their physical environment.Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin-containing focal adhesions and cadherin-containing adherens junctions. Crosstalk between these complexes is well established and modulates the mechanical landscape of the cell. However, integrins and cadherins constitute large families of adhesion receptors and form multiple complexes by interacting with different ligands, adaptor proteins, and cytoskeletal filaments. Recent findings indicate that integrin-containing hemidesmosomes oppose force transduction and traction force generation by focal adhesions. The cytolinker plectin mediates this crosstalk by coupling intermediate filaments to the actin cytoskeleton. Similarly, cadherins in desmosomes might modulate force generation by adherens junctions. Moreover, mechanotransduction can be influenced by podosomes, clathrin lattices, and tetraspanin-enriched microdomains. This review discusses mechanotransduction by multiple integrin- and cadherin-based cell adhesion complexes, which together with the associated cytoskeleton form an integrated network that allows cells to sense, process, and respond to their physical environment.
Author Wang, Wei
Sonnenberg, Arnoud
Zuidema, Alba
Author_xml – sequence: 1
  givenname: Alba
  surname: Zuidema
  fullname: Zuidema, Alba
  organization: The Netherlands Cancer Institute
– sequence: 2
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: The Netherlands Cancer Institute
– sequence: 3
  givenname: Arnoud
  orcidid: 0000-0001-9585-468X
  surname: Sonnenberg
  fullname: Sonnenberg, Arnoud
  email: a.sonnenberg@nki.nl
  organization: The Netherlands Cancer Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32830356$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAQhi1EVRbaK8cqUi-9ZLHHdpI50hUFJCgShbPltScQmo23cSLKv6_D8iEhVZxsj55nNH5nl213oSPG9gWfC87hYNlQnAMHzrkQuMVmQoPIRVVW22zGodA5gip32G6Md4nBAtRHtiOhklzqYsZ-LvoQ42Db39mShnuiLltQ22aH_pZiE9IrrNYt_aWYNV12STdja4epHursnNyt7cLQ2y760U3lT-xDbdtIn5_OPXb94-hqcZKfXRyfLg7PcqcFYI5YI1onUXlArEpvFfmlt1pqQsuxqnydZlelrYUnqJW3JeoiXS13tQO5x75t-q778GekOJhVE10a3HYUxmhAg5JcJOd9VMmiKjkgT-jXN-hdGPsufSRRGqQoADBRX56ocbkib9Z9s7L9g3kONQFqA7gp255q45rhMbUUVdMawc20OzPtzrzsLmnzN9pz5_8KuBHum5Ye3qHN99OjX6_uP9IOqzs
CitedBy_id crossref_primary_10_1016_j_bioactmat_2022_10_029
crossref_primary_10_4103_1673_5374_346461
crossref_primary_10_1016_j_ijbiomac_2024_133418
crossref_primary_10_1016_j_bea_2024_100143
crossref_primary_10_1016_j_yexcr_2023_113723
crossref_primary_10_1016_j_jid_2021_10_018
crossref_primary_10_3390_cells10123487
crossref_primary_10_3389_fcell_2022_882037
crossref_primary_10_1016_j_ceb_2023_102219
crossref_primary_10_3390_ijms22042130
crossref_primary_10_3390_biom14091186
crossref_primary_10_3390_biomimetics8020146
crossref_primary_10_3390_cells13060495
crossref_primary_10_1016_j_bpj_2022_11_2943
crossref_primary_10_1017_S0033583524000015
crossref_primary_10_3390_ijms222111566
crossref_primary_10_1016_j_jconrel_2021_06_002
crossref_primary_10_3390_biomedicines10092227
crossref_primary_10_63716_guffd_1594101
crossref_primary_10_1016_j_ydbio_2024_07_012
crossref_primary_10_3389_fcell_2022_886702
crossref_primary_10_1186_s12915_025_02113_1
crossref_primary_10_1186_s12915_025_02199_7
crossref_primary_10_1002_bies_202400051
crossref_primary_10_1186_s40824_022_00323_0
crossref_primary_10_1038_s41423_022_00945_3
crossref_primary_10_1038_s41568_020_00329_7
crossref_primary_10_1124_pharmrev_122_000622
crossref_primary_10_1016_j_bioactmat_2022_10_011
crossref_primary_10_1038_s41580_024_00777_1
crossref_primary_10_1044_2024_JSLHR_23_00718
crossref_primary_10_1083_jcb_202303107
crossref_primary_10_3389_fcell_2021_786758
crossref_primary_10_3390_biom12121808
crossref_primary_10_1007_s00249_022_01625_w
crossref_primary_10_3390_molecules27092944
crossref_primary_10_1177_00220345211007855
crossref_primary_10_1002_advs_202307929
crossref_primary_10_1016_j_tcb_2022_03_002
crossref_primary_10_3390_biom11060824
crossref_primary_10_1016_j_bioactmat_2022_03_019
crossref_primary_10_3390_cancers16234107
crossref_primary_10_3390_ijms23042118
crossref_primary_10_1038_s42003_025_08210_9
crossref_primary_10_1016_j_expneurol_2024_114994
crossref_primary_10_1016_j_ijbiomac_2023_123426
crossref_primary_10_3390_cells13010096
crossref_primary_10_1038_s43246_024_00444_0
crossref_primary_10_3389_fcell_2025_1569337
crossref_primary_10_3390_cells11132026
crossref_primary_10_1002_1873_3468_14996
crossref_primary_10_3390_cells11081318
crossref_primary_10_3390_ijms22042193
crossref_primary_10_1038_s41580_022_00531_5
crossref_primary_10_1186_s12964_024_01835_z
crossref_primary_10_3390_biomedicines11071995
crossref_primary_10_1016_j_ceb_2021_05_006
crossref_primary_10_3390_ijms23179785
crossref_primary_10_1096_fj_202300222R
crossref_primary_10_1016_j_matbio_2024_11_005
crossref_primary_10_3389_fcell_2022_886569
crossref_primary_10_1016_j_aninu_2025_04_007
crossref_primary_10_3389_fcell_2024_1452463
crossref_primary_10_1242_dev_201013
crossref_primary_10_1242_jcs_261532
crossref_primary_10_3389_fcvm_2021_804934
crossref_primary_10_1242_jcs_261899
crossref_primary_10_26508_lsa_202302196
crossref_primary_10_1242_jcs_259465
crossref_primary_10_3390_cancers15235497
Cites_doi 10.1073/pnas.0510774103
10.1007/s10974-019-09529-7
10.1242/jcs.172056
10.1126/science.1162912
10.1038/s41598-017-11017-2
10.1016/j.bpj.2017.06.064
10.1038/jid.2013.154
10.1016/j.ejcb.2008.02.012
10.1242/jcs.154906
10.1074/jbc.M114.600502
10.1016/j.eml.2017.12.002
10.1016/j.tcb.2018.12.002
10.1038/ncb3268
10.1083/jcb.200306067
10.1038/jid.2009.17
10.1083/jcb.201609037
10.1016/j.tcb.2018.01.008
10.1083/jcb.200506152
10.1371/journal.pone.0195124
10.1242/jcs.221317
10.1016/j.jsb.2016.07.009
10.1038/s41467-019-12304-4
10.1002/bies.201600123
10.1371/journal.pone.0106999
10.1038/s41563-019-0371-y
10.1074/mcp.RA118.001095
10.1111/boc.201700060
10.1083/jcb.201801162
10.1126/science.1254211
10.1016/S0092-8674(02)00971-6
10.1038/ncb2216
10.2741/4444
10.1126/science.aal4713
10.3390/cells7070066
10.1074/jbc.M510617200
10.1038/emboj.2009.376
10.1016/j.yexcr.2015.11.026
10.1002/pmic.201600022
10.1091/mbc.E10-07-0580
10.7554/eLife.22264
10.1038/s41467-019-13123-3
10.1242/jcs.236828
10.1016/j.tcb.2016.03.005
10.1074/jbc.M602116200
10.1242/jcs.064618
10.1073/pnas.1011123108
10.1111/febs.14195
10.1182/blood-2011-03-339531
10.1073/pnas.1220723110
10.1096/fj.13-231829
10.1186/s12915-015-0150-4
10.3389/fcell.2017.00034
10.1038/s41556-018-0220-2
10.1038/s41467-018-06367-y
10.1242/jcs.196881
10.7554/eLife.18124
10.1242/jcs.096214
10.1038/embor.2013.49
10.1002/cbin.10879
10.1038/ncomms6343
10.1152/ajpcell.00604.2008
10.1073/pnas.262791999
10.1038/s41556-018-0223-z
10.1038/bjc.2015.358
10.1158/0008-5472.CAN-16-1483
10.1093/oxfordjournals.jbchem.a124361
10.1038/ncb2747
10.1016/j.devcel.2015.05.005
10.1016/bs.mie.2015.09.009
10.1107/S1399004715002485
10.1101/cshperspect.a005033
10.1007/s00441-014-2061-z
10.1091/mbc.E19-07-0357
10.1242/jcs.045997
10.1083/jcb.201309092
10.1091/mbc.E18-04-0253
10.1038/nrm3141
10.1242/jcs.235366
10.1242/jcs.112.17.2925
10.3389/fcell.2017.00081
10.1083/jcb.200605114
10.1038/nrm3903
10.1074/jbc.M111.314443
10.1038/onc.2013.231
10.1242/jcs.00823
10.1083/jcb.201904137
10.1111/febs.14123
10.1242/jcs.114.23.4143
10.1242/jcs.183699
10.1242/jcs.242404
10.1016/j.str.2010.09.018
10.12688/f1000research.18779.1
10.1083/jcb.201112129
10.1073/pnas.1806275115
10.1242/jcs.172031
10.1073/pnas.77.11.6687
10.4161/cam.3.4.9525
10.1016/B978-0-12-394311-8.00005-4
10.1016/j.semcdb.2017.07.027
10.1083/jcb.201811160
10.1016/j.yexcr.2014.10.001
10.1021/acsnano.7b00622
10.1091/mbc.9.10.2751
10.1038/s41467-018-07523-0
10.1016/j.bpj.2019.01.038
10.1016/j.tcb.2006.05.004
10.1038/ncb3402
10.1128/MCB.21.15.5082-5093.2001
10.1091/mbc.E12-09-0642
10.1038/nrm1736
10.1021/acs.biochem.6b00497
10.1083/jcb.200412081
10.1091/mbc.E14-06-1154
10.1146/annurev.biophys.31.082901.134259
10.1016/j.jbiomech.2007.04.006
10.1091/mbc.12.1.85
10.1111/j.1742-4658.2008.06481.x
10.1242/dev.183780
10.1074/jbc.M110.197467
10.3389/fphys.2018.00824
10.1038/ncomms16068
10.1091/mbc.E18-11-0718
10.1073/pnas.1217279110
10.1111/boc.201600041
10.1038/ncb3036
10.1074/jbc.M008663200
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals LLC
2020 The Authors. BioEssays published by Wiley Periodicals LLC.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals LLC
– notice: 2020 The Authors. BioEssays published by Wiley Periodicals LLC.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1002/bies.202000119
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Virology and AIDS Abstracts
PubMed
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-1878
EndPage n/a
ExternalDocumentID 32830356
10_1002_bies_202000119
BIES202000119
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
– fundername: KWF Kankerbestrijding
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACKIV
ACKOT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KD1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWR
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
XG1
XV2
Y6R
YYQ
YZZ
ZGI
ZUP
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
NPM
VXZ
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5129-99f99ac394d29987da4edbda535e9a0988df26547af1de2f4da7956de2a0cfc23
IEDL.DBID 24P
ISICitedReferencesCount 89
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000561763000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0265-9247
1521-1878
IngestDate Fri Jul 11 18:34:45 EDT 2025
Fri Jul 11 08:40:30 EDT 2025
Fri Jul 25 10:50:46 EDT 2025
Wed Feb 19 02:29:26 EST 2025
Sat Nov 29 05:24:45 EST 2025
Tue Nov 18 21:28:27 EST 2025
Wed Jan 22 16:33:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords cell-matrix
clathrin
tetraspanin
mechanotransduction
cadherin
integrin
cell-cell
Language English
License Attribution
2020 The Authors. BioEssays published by Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5129-99f99ac394d29987da4edbda535e9a0988df26547af1de2f4da7956de2a0cfc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9585-468X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202000119
PMID 32830356
PQID 2452316229
PQPubID 37030
PageCount 11
ParticipantIDs proquest_miscellaneous_2524301956
proquest_miscellaneous_2436870290
proquest_journals_2452316229
pubmed_primary_32830356
crossref_citationtrail_10_1002_bies_202000119
crossref_primary_10_1002_bies_202000119
wiley_primary_10_1002_bies_202000119_BIES202000119
PublicationCentury 2000
PublicationDate November 2020
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle BioEssays
PublicationTitleAlternate Bioessays
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 285
2005; 171
2011; 118
2015; 71
2010; 18
2019; 10
2014; 25
2019; 18
2006; 175
2014; 28
2012; 125
2009; 119
2018; 42
2018; 7
2018; 9
2014; 127
2010; 21
2011; 124
2017; 71
2010; 29
2019; 21
2018; 217
2013; 116
2014; 16
2014; 15
2009; 122
2019; 29
2017; 284
2013; 110
2006; 281
2009; 129
2020; 219
2003; 163
2019; 8
2015; 360
2018; 28
2019; 30
2016; 568
2017; 130
2015; 128
2009; 296
2016; 18
2011; 3
2018; 20
2001; 21
2001; 276
2016; 5
2018; 110
2012; 197
2019; 40
2020; 31
2015; 113
2018; 115
2016; 21
2005; 6
2019; 218
2016; 215
1999; 112
2016; 26
2003; 100
2014; 33
1998; 9
2006; 103
2018; 13
2017; 5
2017; 6
2015; 34
2017; 7
2017; 8
2012; 287
2003; 116
2002; 110
2013; 24
2016; 76
2016; 343
2011; 13
2011; 12
2017; 113
2017; 356
2018; 131
2014; 205
2013; 15
2014; 5
2013; 14
2017; 39
2015; 331
1980; 77
2019; 116
2020; 133
2014; 9
2001; 12
2008; 275
2009; 323
2016; 196
2011; 286
2014; 289
2015; 13
2015; 17
1994; 115
2002; 31
2016; 129
2006; 16
2019; 146
2016; 55
2017; 109
2011; 108
2017; 17
2020
2005; 169
2017; 11
2013; 133
2008; 87
2007; 40
2009; 3
2001; 114
2014; 346
2019; 132
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_29_1
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_102_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
Bijl I. (e_1_2_11_41_1) 2020
e_1_2_11_117_1
e_1_2_11_59_1
e_1_2_11_113_1
e_1_2_11_50_1
e_1_2_11_92_1
Wang Z. (e_1_2_11_123_1) 1999; 112
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_126_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_122_1
e_1_2_11_1_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_110_1
e_1_2_11_39_1
Kim K. K. (e_1_2_11_124_1) 2009; 119
e_1_2_11_72_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_127_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_115_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_38_1
Berditchevski F. (e_1_2_11_91_1) 2001; 114
e_1_2_11_19_1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_120_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_18_1
e_1_2_11_116_1
e_1_2_11_37_1
e_1_2_11_112_1
References_xml – volume: 21
  start-page: 122
  year: 2019
  publication-title: Nat. Cell Biol.
– volume: 77
  start-page: 6687
  year: 1980
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 26
  start-page: 612
  year: 2016
  publication-title: Trends Cell Biol.
– volume: 132
  year: 2019
  publication-title: J. Cell Sci.
– volume: 119
  start-page: 213
  year: 2009
  publication-title: J. Clin. Invest.
– volume: 129
  start-page: 2072
  year: 2009
  publication-title: J. Invest. Dermatol.
– volume: 13
  year: 2018
  publication-title: PLoS One
– volume: 13
  start-page: 383
  year: 2011
  publication-title: Nat. Cell Biol.
– volume: 18
  start-page: 941
  year: 2016
  publication-title: Nat. Cell Biol.
– volume: 114
  start-page: 4143
  year: 2001
  publication-title: J. Cell Sci.
– volume: 128
  start-page: 3435
  year: 2015
  publication-title: J. Cell Sci.
– volume: 133
  year: 2020
  publication-title: J. Cell Sci.
– volume: 18
  start-page: 1654
  year: 2010
  publication-title: Structure
– volume: 284
  start-page: 3355
  year: 2017
  publication-title: FEBS J.
– volume: 3
  year: 2011
  publication-title: Cold Spring Harbor Perspect. Biol.
– volume: 9
  start-page: 3825
  year: 2018
  publication-title: Nat. Commun.
– volume: 31
  start-page: 151
  year: 2002
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
– volume: 21
  start-page: 5082
  year: 2001
  publication-title: Mol. Cell. Biol.
– volume: 103
  start-page: 1774
  year: 2006
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 115
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 287
  year: 2012
  publication-title: J. Biol. Chem.
– volume: 30
  start-page: 181
  year: 2019
  publication-title: Mol. Biol. Cell
– volume: 127
  start-page: 3641
  year: 2014
  publication-title: J. Cell Sci.
– volume: 76
  start-page: 6577
  year: 2016
  publication-title: Cancer Res.
– volume: 215
  start-page: 445
  year: 2016
  publication-title: J. Cell Biol.
– volume: 125
  start-page: 2172
  year: 2012
  publication-title: J. Cell Sci.
– volume: 21
  start-page: 4108
  year: 2010
  publication-title: Mol. Biol. Cell
– volume: 218
  start-page: 2086
  year: 2019
  publication-title: J. Cell Biol.
– volume: 331
  start-page: 331
  year: 2015
  publication-title: Exp. Cell Res.
– volume: 110
  start-page: 673
  year: 2002
  publication-title: Cell
– volume: 110
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 2020
  publication-title: Matrix Biol.
– volume: 12
  start-page: 413
  year: 2011
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 133
  start-page: 2180
  year: 2013
  publication-title: J. Invest. Dermatol.
– volume: 5
  start-page: 34
  year: 2017
  publication-title: Front. Cell. Dev. Biol.
– volume: 15
  start-page: 625
  year: 2013
  publication-title: Nat. Cell Biol.
– volume: 343
  start-page: 67
  year: 2016
  publication-title: Exp. Cell Res.
– volume: 34
  start-page: 33
  year: 2015
  publication-title: Dev. Cell
– volume: 28
  start-page: 356
  year: 2018
  publication-title: Trends Cell Biol.
– volume: 15
  start-page: 825
  year: 2014
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 109
  start-page: 127
  year: 2017
  publication-title: Biol. Cell.
– volume: 17
  year: 2017
  publication-title: Proteomics
– volume: 360
  start-page: 363
  year: 2015
  publication-title: Cell Tissue Res.
– volume: 346
  year: 2014
  publication-title: Science
– volume: 116
  start-page: 95
  year: 2013
  publication-title: Prog. Mol. Biol. Transl. Sci.
– volume: 296
  start-page: C868
  year: 2009
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 25
  start-page: 3581
  year: 2014
  publication-title: Mol. Biol. Cell
– volume: 197
  start-page: 819
  year: 2012
  publication-title: J. Cell Biol.
– volume: 113
  start-page: 948
  year: 2017
  publication-title: Biophys. J.
– volume: 217
  start-page: 3031
  year: 2018
  publication-title: J. Cell Biol.
– volume: 276
  start-page: 1494
  year: 2001
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 2751
  year: 1998
  publication-title: Mol. Biol. Cell
– volume: 169
  start-page: 515
  year: 2005
  publication-title: J. Cell Biol.
– volume: 11
  start-page: 4028
  year: 2017
  publication-title: ACS Nano
– volume: 30
  start-page: 579
  year: 2019
  publication-title: Mol. Biol. Cell
– volume: 110
  start-page: 842
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 116
  start-page: 1011
  year: 2019
  publication-title: Biophys. J.
– volume: 100
  start-page: 2272
  year: 2003
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 146
  year: 2019
  publication-title: Development
– volume: 9
  year: 2014
  publication-title: PLoS One
– volume: 10
  start-page: 4507
  year: 2019
  publication-title: Nat. Commun.
– volume: 568
  start-page: 35
  year: 2016
  publication-title: Methods Enzymol.
– volume: 219
  year: 2020
  publication-title: J. Cell Biol.
– volume: 7
  start-page: 66
  year: 2018
  publication-title: Cells
– volume: 124
  start-page: 1183
  year: 2011
  publication-title: J. Cell Sci.
– volume: 323
  start-page: 638
  year: 2009
  publication-title: Science
– volume: 356
  year: 2017
  publication-title: Science
– volume: 21
  start-page: 1092
  year: 2016
  publication-title: Front. Biosci.
– volume: 6
  year: 2017
  publication-title: Elife
– volume: 18
  start-page: 638
  year: 2019
  publication-title: Nat. Mater.
– volume: 40
  start-page: 2096
  year: 2007
  publication-title: J. Biomech.
– volume: 9
  start-page: 824
  year: 2018
  publication-title: Front. Physiol.
– volume: 12
  start-page: 85
  year: 2001
  publication-title: Mol. Biol. Cell
– volume: 115
  start-page: 469
  year: 1994
  publication-title: J. Biochem.
– volume: 16
  start-page: 376
  year: 2006
  publication-title: Trends Cell Biol.
– volume: 33
  start-page: 2779
  year: 2014
  publication-title: Oncogene
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 118
  start-page: 4274
  year: 2011
  publication-title: Blood
– volume: 20
  start-page: 125
  year: 2018
  publication-title: Extreme Mech. Lett.
– volume: 8
  start-page: 1044
  year: 2019
  publication-title: F1000Research
– volume: 5
  start-page: 81
  year: 2017
  publication-title: Front. Cell Dev. Biol.
– volume: 128
  start-page: 4138
  year: 2015
  publication-title: J. Cell Sci.
– volume: 196
  start-page: 48
  year: 2016
  publication-title: J. Struct. Biol.
– volume: 122
  start-page: 2263
  year: 2009
  publication-title: J. Cell Sci.
– volume: 129
  start-page: 1093
  year: 2016
  publication-title: J. Cell Sci.
– volume: 16
  start-page: 931
  year: 2014
  publication-title: Nat. Cell Biol.
– volume: 9
  start-page: 5284
  year: 2018
  publication-title: Nat. Commun.
– volume: 286
  year: 2011
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 261
  year: 2013
  publication-title: Mol. Biol. Cell
– volume: 6
  start-page: 801
  year: 2005
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 131
  year: 2018
  publication-title: J. Cell Sci.
– volume: 71
  start-page: 75
  year: 2017
  publication-title: Semin. Cell Dev. Biol.
– volume: 285
  start-page: 8
  year: 2018
  publication-title: FEBS J.
– volume: 29
  start-page: 241
  year: 2019
  publication-title: Trends Cell Biol.
– volume: 281
  year: 2006
  publication-title: J. Biol. Chem.
– volume: 42
  start-page: 132
  year: 2018
  publication-title: Cell Biol. Int.
– volume: 163
  start-page: 1351
  year: 2003
  publication-title: J. Cell Biol.
– volume: 5
  start-page: 5343
  year: 2014
  publication-title: Nat. Commun.
– volume: 116
  start-page: 4977
  year: 2003
  publication-title: J. Cell Sci.
– volume: 205
  start-page: 251
  year: 2014
  publication-title: J. Cell Biol.
– volume: 13
  start-page: 47
  year: 2015
  publication-title: BMC Biol.
– volume: 71
  start-page: 969
  year: 2015
  publication-title: Acta Crystallogr., Sect. D: Struct. Biol.
– volume: 39
  start-page: 1
  year: 2017
  publication-title: BioEssays
– volume: 17
  start-page: 1597
  year: 2015
  publication-title: Nat. Cell Biol.
– volume: 113
  start-page: 1445
  year: 2015
  publication-title: Br. J. Cancer
– volume: 289
  year: 2014
  publication-title: J. Biol. Chem.
– volume: 5
  year: 2016
  publication-title: Elife
– volume: 28
  start-page: 715
  year: 2014
  publication-title: FASEB J.
– volume: 275
  start-page: 3335
  year: 2008
  publication-title: FEBS J.
– volume: 3
  start-page: 361
  year: 2009
  publication-title: Cell Adhes. Migr.
– volume: 31
  start-page: 741
  year: 2020
  publication-title: Mol. Biol. Cell
– volume: 14
  start-page: 509
  year: 2013
  publication-title: EMBO Rep.
– volume: 130
  start-page: 892
  year: 2017
  publication-title: J. Cell Sci.
– volume: 29
  start-page: 281
  year: 2010
  publication-title: EMBO J.
– volume: 110
  start-page: 49
  year: 2018
  publication-title: Biol. Cell.
– volume: 87
  start-page: 491
  year: 2008
  publication-title: Eur. J. Cell Biol.
– volume: 20
  start-page: 1290
  year: 2018
  publication-title: Nat. Cell Biol.
– volume: 55
  start-page: 5038
  year: 2016
  publication-title: Biochemistry
– volume: 10
  start-page: 5171
  year: 2019
  publication-title: Nat. Commun.
– volume: 40
  start-page: 197
  year: 2019
  publication-title: J. Muscle Res. Cell Motil.
– volume: 108
  start-page: 4708
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 112
  start-page: 2925
  year: 1999
  publication-title: J. Cell Sci.
– volume: 175
  start-page: 993
  year: 2006
  publication-title: J. Cell Biol.
– volume: 18
  start-page: 277
  year: 2019
  publication-title: Mol. Cell. Proteomics
– volume: 171
  start-page: 153
  year: 2005
  publication-title: J. Cell Biol.
– ident: e_1_2_11_107_1
  doi: 10.1073/pnas.0510774103
– ident: e_1_2_11_57_1
  doi: 10.1007/s10974-019-09529-7
– ident: e_1_2_11_77_1
  doi: 10.1242/jcs.172056
– ident: e_1_2_11_32_1
  doi: 10.1126/science.1162912
– ident: e_1_2_11_67_1
  doi: 10.1038/s41598-017-11017-2
– ident: e_1_2_11_36_1
  doi: 10.1016/j.bpj.2017.06.064
– ident: e_1_2_11_122_1
  doi: 10.1038/jid.2013.154
– ident: e_1_2_11_52_1
  doi: 10.1016/j.ejcb.2008.02.012
– ident: e_1_2_11_18_1
  doi: 10.1242/jcs.154906
– ident: e_1_2_11_127_1
  doi: 10.1074/jbc.M114.600502
– ident: e_1_2_11_118_1
  doi: 10.1016/j.eml.2017.12.002
– ident: e_1_2_11_84_1
  doi: 10.1016/j.tcb.2018.12.002
– ident: e_1_2_11_33_1
  doi: 10.1038/ncb3268
– ident: e_1_2_11_125_1
  doi: 10.1083/jcb.200306067
– ident: e_1_2_11_119_1
  doi: 10.1038/jid.2009.17
– ident: e_1_2_11_7_1
  doi: 10.1083/jcb.201609037
– ident: e_1_2_11_8_1
  doi: 10.1016/j.tcb.2018.01.008
– ident: e_1_2_11_108_1
  doi: 10.1083/jcb.200506152
– ident: e_1_2_11_120_1
  doi: 10.1371/journal.pone.0195124
– ident: e_1_2_11_89_1
  doi: 10.1242/jcs.221317
– ident: e_1_2_11_16_1
  doi: 10.1016/j.jsb.2016.07.009
– ident: e_1_2_11_53_1
  doi: 10.1038/s41467-019-12304-4
– ident: e_1_2_11_112_1
  doi: 10.1002/bies.201600123
– ident: e_1_2_11_102_1
  doi: 10.1371/journal.pone.0106999
– ident: e_1_2_11_59_1
  doi: 10.1038/s41563-019-0371-y
– ident: e_1_2_11_78_1
  doi: 10.1074/mcp.RA118.001095
– ident: e_1_2_11_10_1
  doi: 10.1111/boc.201700060
– ident: e_1_2_11_64_1
  doi: 10.1083/jcb.201801162
– ident: e_1_2_11_106_1
  doi: 10.1126/science.1254211
– ident: e_1_2_11_9_1
  doi: 10.1016/S0092-8674(02)00971-6
– ident: e_1_2_11_43_1
  doi: 10.1038/ncb2216
– ident: e_1_2_11_50_1
  doi: 10.2741/4444
– ident: e_1_2_11_88_1
  doi: 10.1126/science.aal4713
– ident: e_1_2_11_117_1
  doi: 10.3390/cells7070066
– ident: e_1_2_11_105_1
  doi: 10.1074/jbc.M510617200
– ident: e_1_2_11_38_1
  doi: 10.1038/emboj.2009.376
– ident: e_1_2_11_11_1
  doi: 10.1016/j.yexcr.2015.11.026
– ident: e_1_2_11_24_1
  doi: 10.1002/pmic.201600022
– ident: e_1_2_11_48_1
  doi: 10.1091/mbc.E10-07-0580
– ident: e_1_2_11_28_1
  doi: 10.7554/eLife.22264
– ident: e_1_2_11_55_1
  doi: 10.1038/s41467-019-13123-3
– ident: e_1_2_11_56_1
  doi: 10.1242/jcs.236828
– ident: e_1_2_11_3_1
  doi: 10.1016/j.tcb.2016.03.005
– ident: e_1_2_11_104_1
  doi: 10.1074/jbc.M602116200
– ident: e_1_2_11_111_1
  doi: 10.1242/jcs.064618
– ident: e_1_2_11_109_1
  doi: 10.1073/pnas.1011123108
– ident: e_1_2_11_23_1
  doi: 10.1111/febs.14195
– year: 2020
  ident: e_1_2_11_41_1
  publication-title: Matrix Biol.
– ident: e_1_2_11_99_1
  doi: 10.1182/blood-2011-03-339531
– ident: e_1_2_11_35_1
  doi: 10.1073/pnas.1220723110
– ident: e_1_2_11_79_1
  doi: 10.1096/fj.13-231829
– ident: e_1_2_11_2_1
  doi: 10.1186/s12915-015-0150-4
– ident: e_1_2_11_90_1
  doi: 10.3389/fcell.2017.00034
– ident: e_1_2_11_87_1
  doi: 10.1038/s41556-018-0220-2
– ident: e_1_2_11_85_1
  doi: 10.1038/s41467-018-06367-y
– ident: e_1_2_11_75_1
  doi: 10.1242/jcs.196881
– ident: e_1_2_11_58_1
  doi: 10.7554/eLife.18124
– ident: e_1_2_11_40_1
  doi: 10.1242/jcs.096214
– ident: e_1_2_11_42_1
  doi: 10.1038/embor.2013.49
– ident: e_1_2_11_65_1
  doi: 10.1002/cbin.10879
– ident: e_1_2_11_51_1
  doi: 10.1038/ncomms6343
– ident: e_1_2_11_80_1
  doi: 10.1152/ajpcell.00604.2008
– ident: e_1_2_11_37_1
  doi: 10.1073/pnas.262791999
– ident: e_1_2_11_44_1
  doi: 10.1038/s41556-018-0223-z
– ident: e_1_2_11_126_1
  doi: 10.1038/bjc.2015.358
– ident: e_1_2_11_98_1
  doi: 10.1158/0008-5472.CAN-16-1483
– ident: e_1_2_11_61_1
  doi: 10.1093/oxfordjournals.jbchem.a124361
– ident: e_1_2_11_26_1
  doi: 10.1038/ncb2747
– ident: e_1_2_11_128_1
  doi: 10.1016/j.devcel.2015.05.005
– ident: e_1_2_11_66_1
  doi: 10.1016/bs.mie.2015.09.009
– ident: e_1_2_11_70_1
  doi: 10.1107/S1399004715002485
– ident: e_1_2_11_5_1
  doi: 10.1101/cshperspect.a005033
– ident: e_1_2_11_14_1
  doi: 10.1007/s00441-014-2061-z
– ident: e_1_2_11_121_1
  doi: 10.1091/mbc.E19-07-0357
– ident: e_1_2_11_101_1
  doi: 10.1242/jcs.045997
– ident: e_1_2_11_114_1
  doi: 10.1083/jcb.201309092
– ident: e_1_2_11_30_1
  doi: 10.1091/mbc.E18-04-0253
– ident: e_1_2_11_46_1
  doi: 10.1038/nrm3141
– ident: e_1_2_11_62_1
  doi: 10.1242/jcs.235366
– volume: 112
  start-page: 2925
  year: 1999
  ident: e_1_2_11_123_1
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.112.17.2925
– ident: e_1_2_11_63_1
  doi: 10.3389/fcell.2017.00081
– ident: e_1_2_11_73_1
  doi: 10.1083/jcb.200605114
– ident: e_1_2_11_1_1
  doi: 10.1038/nrm3903
– ident: e_1_2_11_96_1
  doi: 10.1074/jbc.M111.314443
– ident: e_1_2_11_100_1
  doi: 10.1038/onc.2013.231
– volume: 119
  start-page: 213
  year: 2009
  ident: e_1_2_11_124_1
  publication-title: J. Clin. Invest.
– ident: e_1_2_11_82_1
  doi: 10.1242/jcs.00823
– ident: e_1_2_11_74_1
  doi: 10.1083/jcb.201904137
– ident: e_1_2_11_47_1
  doi: 10.1111/febs.14123
– volume: 114
  start-page: 4143
  year: 2001
  ident: e_1_2_11_91_1
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.114.23.4143
– ident: e_1_2_11_21_1
  doi: 10.1242/jcs.183699
– ident: e_1_2_11_29_1
  doi: 10.1242/jcs.242404
– ident: e_1_2_11_34_1
  doi: 10.1016/j.str.2010.09.018
– ident: e_1_2_11_20_1
  doi: 10.12688/f1000research.18779.1
– ident: e_1_2_11_115_1
  doi: 10.1083/jcb.201112129
– ident: e_1_2_11_93_1
  doi: 10.1073/pnas.1806275115
– ident: e_1_2_11_113_1
  doi: 10.1242/jcs.172031
– ident: e_1_2_11_45_1
  doi: 10.1073/pnas.77.11.6687
– ident: e_1_2_11_13_1
  doi: 10.4161/cam.3.4.9525
– ident: e_1_2_11_22_1
  doi: 10.1016/B978-0-12-394311-8.00005-4
– ident: e_1_2_11_6_1
  doi: 10.1016/j.semcdb.2017.07.027
– ident: e_1_2_11_17_1
  doi: 10.1083/jcb.201811160
– ident: e_1_2_11_76_1
  doi: 10.1016/j.yexcr.2014.10.001
– ident: e_1_2_11_54_1
  doi: 10.1021/acsnano.7b00622
– ident: e_1_2_11_92_1
  doi: 10.1091/mbc.9.10.2751
– ident: e_1_2_11_116_1
  doi: 10.1038/s41467-018-07523-0
– ident: e_1_2_11_39_1
  doi: 10.1016/j.bpj.2019.01.038
– ident: e_1_2_11_12_1
  doi: 10.1016/j.tcb.2006.05.004
– ident: e_1_2_11_60_1
  doi: 10.1038/ncb3402
– ident: e_1_2_11_71_1
  doi: 10.1128/MCB.21.15.5082-5093.2001
– ident: e_1_2_11_103_1
  doi: 10.1091/mbc.E12-09-0642
– ident: e_1_2_11_19_1
  doi: 10.1038/nrm1736
– ident: e_1_2_11_95_1
  doi: 10.1021/acs.biochem.6b00497
– ident: e_1_2_11_25_1
  doi: 10.1083/jcb.200412081
– ident: e_1_2_11_15_1
  doi: 10.1091/mbc.E14-06-1154
– ident: e_1_2_11_94_1
  doi: 10.1146/annurev.biophys.31.082901.134259
– ident: e_1_2_11_31_1
  doi: 10.1016/j.jbiomech.2007.04.006
– ident: e_1_2_11_81_1
  doi: 10.1091/mbc.12.1.85
– ident: e_1_2_11_97_1
  doi: 10.1111/j.1742-4658.2008.06481.x
– ident: e_1_2_11_68_1
  doi: 10.1242/dev.183780
– ident: e_1_2_11_69_1
  doi: 10.1074/jbc.M110.197467
– ident: e_1_2_11_4_1
  doi: 10.3389/fphys.2018.00824
– ident: e_1_2_11_83_1
  doi: 10.1038/ncomms16068
– ident: e_1_2_11_86_1
  doi: 10.1091/mbc.E18-11-0718
– ident: e_1_2_11_110_1
  doi: 10.1073/pnas.1217279110
– ident: e_1_2_11_27_1
  doi: 10.1111/boc.201600041
– ident: e_1_2_11_49_1
  doi: 10.1038/ncb3036
– ident: e_1_2_11_72_1
  doi: 10.1074/jbc.M008663200
SSID ssj0009624
Score 2.5923579
SecondaryResourceType review_article
Snippet Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2000119
SubjectTerms Actin
Adaptor proteins
Adherens junctions
Adhesion
Biological activity
cadherin
Cadherins
Cell adhesion
Cell adhesion & migration
cell‐matrix
cell–cell
Clathrin
Crosstalk
Cytoskeleton
Desmosomes
Filaments
Hemidesmosomes
integrin
Integrins
Intermediate filaments
landscapes
Lattices
ligands
Mechanotransduction
microfilaments
physiology
tetraspanin
Traction force
Title Crosstalk between Cell Adhesion Complexes in Regulation of Mechanotransduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202000119
https://www.ncbi.nlm.nih.gov/pubmed/32830356
https://www.proquest.com/docview/2452316229
https://www.proquest.com/docview/2436870290
https://www.proquest.com/docview/2524301956
Volume 42
WOSCitedRecordID wos000561763000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-1878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009624
  issn: 0265-9247
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6tIO9bN26blk_cKHQJ1Nbkm3pccsW-tCGUlbIm5H1QUODM5p0bP_97izHaRjtYH0Rsu8Eh6TT3cm-3wEcF7kx3koVC5FhI3URK6NFnDAlfJ5wz6smUfi8GI3keKwuH2TxB3yI7sKNNKM5r0nBdTU_XYGGVhRJYujeeDXqBWymKS9oXzNxuYLdzZuythhoZDFGGsUStjFhp-vj183SX77muuva2J7hm-dLvQ2vW78z-hw2ylvYcPU7eBkqUf7egdGAxEJH_DZq_9yKBm6K_PbG0X1aROfG1P1y82hSR1ehgD29n_nowlH28GxBVs8GMNr3cD389n1wFrelFmJDFj9WyiulDVfCon2ShdXC2crqjGdO6URJaT2jOsXap9YxL6wuMLLCrk6MN4zvQq-e1e4jRKnInK-kdN4bgc6FZrlPpXGs4lZpkfUhXs50aVocciqHMS0DgjIraY7Kbo76cNLx_wgIHI9y7i8Xrmw1EakCQ-00ZwzJRx0ZdYg-jOjaze6Jh-d4bjGVPMGTIVeTXdmHD2FTdOJwQlHjRGHN2v9DzvILevrd06f_GbQHr6gfkiL3obe4u3cHsGV-Libzu8NGB7AtxvIQNr9eDa_P_wAswAgQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEB_8RF_uTj3v1q-rIPhUtpukbfLoLSeK6yKi4FtJ84FyS_fQ9bj7751pupVFVDjupbSZCQxJJjOTZn4DcJBnxngrVSxEig-p81gZLeKEKeGzhHte1onCg3w4lDc36qK5TUi5MAEfoj1wI82o92tScDqQ7j6jhpYUSmLsXrs1ah4WBZomutXHxMUz7m5W17XFSCONMdTIp7iNCevO9p-1Sy-czVnftTY-xx__g9if4EPjeUZHYamswZyr1mE51KL8uwHDPsmFrvjPqLm7FfXdCPntraMTtYh2jpH74x6iuyq6DCXsqX3so3NH-cPjCdk9G-BoP8P18Y-r_kncFFuIDdn8WCmvlDZcCYsWSuZWC2dLq1OeOqUTJaX1jCoVa9-zjnlhdY6xFb7qxHjD-CYsVOPKfYWoJ1LnSymd90age6FZ5nvSOFZyq7RIOxBPh7owDRI5FcQYFQFDmRU0RkU7Rh04bPl_BQyOVzl3pjNXNLqIVIHBdi9jDMn7LRm1iH6N6MqNH4mHZ7hzMZW8wZMiV51f2YEvYVW04nDCUeNEYfXkvyNn8R19_fZr6186fYOVk6vzQTE4HZ5twyq1hxTJHViY3D-6XVgyvyd3D_d7tUI8AV-QCWw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB9a24ov1dqqZ7XdQqFPi3tJdjd5tFcPpXocpQXflmw-qHjsiZ6i_70zyd7KUVqh-LLsZiYwJJnMTDbzG4DPZWGMt1KlQuT4kLpMldEizZgSvsi453VIFD4uRyN5eqrG7W1CyoWJ-BDdgRtpRtivScHdhfV7D6ihNYWSGLsHt0Y9hxciL4NuMjF-wN0tQl1bjDTyFEONco7bmLG9xf6LdukPZ3PRdw3GZ7j6BGKvwevW80z241J5A89csw6vYi3Ku7cwGpBc6IqfJ-3drWTgJshvfzs6UUto55i4W3eVnDXJj1jCntqnPjlxlD88nZHdsxGO9h38Gh78HBymbbGF1JDNT5XySmnDlbBooWRptXC2tjrnuVM6U1Jaz6hSsfZ965gXVpcYW-Grzow3jG_AUjNt3BYkfZE7X0vpvDcC3QvNCt-XxrGaW6VF3oN0PtSVaZHIqSDGpIoYyqyiMaq6MerBl47_ImJw_JVzZz5zVauLSBUYbPcLxpD8qSOjFtGvEd246TXx8AJ3Lqayf_DkyBXyK3uwGVdFJw4nHDVOFBYm_xE5q6_o63df2__T6SMsj78Nq-Oj0ff3sELNMUNyB5Zml9duF16am9nZ1eWHoA_32vwI5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crosstalk+between+Cell+Adhesion+Complexes+in+Regulation+of+Mechanotransduction&rft.jtitle=BioEssays&rft.au=Zuidema%2C+Alba&rft.au=Wang%2C+Wei&rft.au=Sonnenberg%2C+Arnoud&rft.date=2020-11-01&rft.issn=0265-9247&rft.eissn=1521-1878&rft.volume=42&rft.issue=11&rft_id=info:doi/10.1002%2Fbies.202000119&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bies_202000119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon