Influence of Sampling Rate on Wearable IMU Orientation Estimation Accuracy for Human Movement Analysis
Wearable inertial measurement units (IMUs) have been widely used in human movement analysis outside the laboratory. However, the IMU-based orientation estimation remains challenging, particularly in scenarios involving relatively fast movements. Increased sampling rate has the potential to improve a...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 25; no. 7; p. 1976 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
22.03.2025
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Wearable inertial measurement units (IMUs) have been widely used in human movement analysis outside the laboratory. However, the IMU-based orientation estimation remains challenging, particularly in scenarios involving relatively fast movements. Increased sampling rate has the potential to improve accuracy, but it also increases power consumption and computational complexity. The relationship between sampling frequencies and accuracies remains unclear. We thus investigated the specific influence of IMU sampling frequency on orientation estimation across a spectrum of movement speeds and recommended sufficient sampling rates. Seventeen healthy subjects wore IMUs on their thigh, shank, and foot and performed walking (1.2 m/s) and running (2.2 m/s) trials on a treadmill, and a motion testbed with an IMU was used to mimic high-frequency cyclic human movements up to 3.0 Hz. Four widely used IMU sensor fusion algorithms computed orientations at 10, 25, 50, 100, 200, 400, 800, and 1600 Hz and were compared with marker-based optical motion capture (OMC) orientations to determine accuracy. Results suggest that the sufficient IMU sampling rate for walking is 100 Hz, running is 200 Hz, and high-speed cyclic movements is 400 Hz. The accelerometer sampling rate is less important than the gyroscope sampling rate. Further, accelerometer sampling rates exceeding 100 Hz even resulted in decreased accuracy because excessive orientation updates using distorted accelerations and angular velocity introduced more error than merely using angular velocity. These findings could serve as a foundation to inform wearable IMU development or selection across a spectrum of human gait movement speeds. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1424-8220 1424-8220 |
| DOI: | 10.3390/s25071976 |