An Overview and Comparison of Traditional Motion Planning Based on Rapidly Exploring Random Trees
Motion planning is a fundamental problem in robotics that involves determining feasible or optimal paths within finite time. While complete motion planning algorithms are guaranteed to converge to a path solution in finite time, they are proven to be computationally inefficient, making them unsuitab...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 25; H. 7; S. 2067 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
26.03.2025
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Motion planning is a fundamental problem in robotics that involves determining feasible or optimal paths within finite time. While complete motion planning algorithms are guaranteed to converge to a path solution in finite time, they are proven to be computationally inefficient, making them unsuitable for most practical problems. Resolution-complete algorithms, on the other hand, ensure completeness only if the resolution parameter is sufficiently fine, but they suffer severely from the curse of dimensionality. In contrast, sampling-based algorithms, such as Rapidly Exploring Random Trees (RRT) and its variants, have gained the increasing attention of researchers due to their computational efficiency and effectiveness, particularly in high-dimensional problems. This review paper introduces RRT-based algorithms and provides an overview of their key methodological aspects. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1424-8220 1424-8220 |
| DOI: | 10.3390/s25072067 |