Fault Diagnosis of Planetary Gearbox Based on Hierarchical Refined Composite Multiscale Fuzzy Entropy and Optimized LSSVM
Efficient extraction and classification of fault features remain critical challenges in planetary gearbox fault diagnosis. A fault diagnosis framework is proposed that integrates hierarchical refined composite multiscale fuzzy entropy (HRCMFE) for feature extraction and a gray wolf optimization (GWO...
Gespeichert in:
| Veröffentlicht in: | Entropy (Basel, Switzerland) Jg. 27; H. 5; S. 512 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
10.05.2025
MDPI |
| Schlagworte: | |
| ISSN: | 1099-4300, 1099-4300 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Efficient extraction and classification of fault features remain critical challenges in planetary gearbox fault diagnosis. A fault diagnosis framework is proposed that integrates hierarchical refined composite multiscale fuzzy entropy (HRCMFE) for feature extraction and a gray wolf optimization (GWO)-optimized least squares support vector machine (LSSVM) for classification. Firstly, the HRCMFE is developed for feature extraction, which combines the segmentation advantage of hierarchical entropy (HE) and the computational stability advantage of refined composite multiscale fuzzy entropy (RCMFE). Secondly, the hyperparameters of LSSVM are optimized by GWO using a proposed fitness function. Finally, fault diagnosis of the planetary gearbox is achieved by the optimized LSSVM using the HRCMFE-extracted features. Simulation and experimental study results indicate that the proposed method demonstrates superior effectiveness in both feature discriminability and diagnosis accuracy. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1099-4300 1099-4300 |
| DOI: | 10.3390/e27050512 |