Identifying Influential Nodes Based on Evidence Theory in Complex Network
Influential node identification is an important and hot topic in the field of complex network science. Classical algorithms for identifying influential nodes are typically based on a single attribute of nodes or the simple fusion of a few attributes. However, these methods perform poorly in real net...
Uloženo v:
| Vydáno v: | Entropy (Basel, Switzerland) Ročník 27; číslo 4; s. 406 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
10.04.2025
MDPI |
| Témata: | |
| ISSN: | 1099-4300, 1099-4300 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Influential node identification is an important and hot topic in the field of complex network science. Classical algorithms for identifying influential nodes are typically based on a single attribute of nodes or the simple fusion of a few attributes. However, these methods perform poorly in real networks with high complexity and diversity. To address this issue, a new method based on the Dempster–Shafer (DS) evidence theory is proposed in this paper, which improves the efficiency of identifying influential nodes through the following three aspects. Firstly, Dempster–Shafer evidence theory quantifies uncertainty through its basic belief assignment function and combines evidence from different information sources, enabling it to effectively handle uncertainty. Secondly, Dempster–Shafer evidence theory processes conflicting evidence using Dempster’s rule of combination, enhancing the reliability of decision-making. Lastly, in complex networks, information may come from multiple dimensions, and the Dempster–Shafer theory can effectively integrate this multidimensional information. To verify the effectiveness of the proposed method, extensive experiments are conducted on real-world complex networks. The results show that, compared to the other algorithms, attacking the influential nodes identified by the DS method is more likely to lead to the disintegration of the network, which indicates that the DS method is more effective for identifying the key nodes in the network. To further validate the reliability of the proposed algorithm, we use the visibility graph algorithm to convert the GBP futures time series into a complex network and then rank the nodes in the network using the DS method. The results show that the top-ranked nodes correspond to the peaks and troughs of the time series, which represents the key turning points in price changes. By conducting an in-depth analysis, investors can uncover major events that influence price trends, once again confirming the effectiveness of the algorithm. |
|---|---|
| AbstractList | Influential node identification is an important and hot topic in the field of complex network science. Classical algorithms for identifying influential nodes are typically based on a single attribute of nodes or the simple fusion of a few attributes. However, these methods perform poorly in real networks with high complexity and diversity. To address this issue, a new method based on the Dempster–Shafer (DS) evidence theory is proposed in this paper, which improves the efficiency of identifying influential nodes through the following three aspects. Firstly, Dempster–Shafer evidence theory quantifies uncertainty through its basic belief assignment function and combines evidence from different information sources, enabling it to effectively handle uncertainty. Secondly, Dempster–Shafer evidence theory processes conflicting evidence using Dempster’s rule of combination, enhancing the reliability of decision-making. Lastly, in complex networks, information may come from multiple dimensions, and the Dempster–Shafer theory can effectively integrate this multidimensional information. To verify the effectiveness of the proposed method, extensive experiments are conducted on real-world complex networks. The results show that, compared to the other algorithms, attacking the influential nodes identified by the DS method is more likely to lead to the disintegration of the network, which indicates that the DS method is more effective for identifying the key nodes in the network. To further validate the reliability of the proposed algorithm, we use the visibility graph algorithm to convert the GBP futures time series into a complex network and then rank the nodes in the network using the DS method. The results show that the top-ranked nodes correspond to the peaks and troughs of the time series, which represents the key turning points in price changes. By conducting an in-depth analysis, investors can uncover major events that influence price trends, once again confirming the effectiveness of the algorithm. Influential node identification is an important and hot topic in the field of complex network science. Classical algorithms for identifying influential nodes are typically based on a single attribute of nodes or the simple fusion of a few attributes. However, these methods perform poorly in real networks with high complexity and diversity. To address this issue, a new method based on the Dempster-Shafer (DS) evidence theory is proposed in this paper, which improves the efficiency of identifying influential nodes through the following three aspects. Firstly, Dempster-Shafer evidence theory quantifies uncertainty through its basic belief assignment function and combines evidence from different information sources, enabling it to effectively handle uncertainty. Secondly, Dempster-Shafer evidence theory processes conflicting evidence using Dempster's rule of combination, enhancing the reliability of decision-making. Lastly, in complex networks, information may come from multiple dimensions, and the Dempster-Shafer theory can effectively integrate this multidimensional information. To verify the effectiveness of the proposed method, extensive experiments are conducted on real-world complex networks. The results show that, compared to the other algorithms, attacking the influential nodes identified by the DS method is more likely to lead to the disintegration of the network, which indicates that the DS method is more effective for identifying the key nodes in the network. To further validate the reliability of the proposed algorithm, we use the visibility graph algorithm to convert the GBP futures time series into a complex network and then rank the nodes in the network using the DS method. The results show that the top-ranked nodes correspond to the peaks and troughs of the time series, which represents the key turning points in price changes. By conducting an in-depth analysis, investors can uncover major events that influence price trends, once again confirming the effectiveness of the algorithm.Influential node identification is an important and hot topic in the field of complex network science. Classical algorithms for identifying influential nodes are typically based on a single attribute of nodes or the simple fusion of a few attributes. However, these methods perform poorly in real networks with high complexity and diversity. To address this issue, a new method based on the Dempster-Shafer (DS) evidence theory is proposed in this paper, which improves the efficiency of identifying influential nodes through the following three aspects. Firstly, Dempster-Shafer evidence theory quantifies uncertainty through its basic belief assignment function and combines evidence from different information sources, enabling it to effectively handle uncertainty. Secondly, Dempster-Shafer evidence theory processes conflicting evidence using Dempster's rule of combination, enhancing the reliability of decision-making. Lastly, in complex networks, information may come from multiple dimensions, and the Dempster-Shafer theory can effectively integrate this multidimensional information. To verify the effectiveness of the proposed method, extensive experiments are conducted on real-world complex networks. The results show that, compared to the other algorithms, attacking the influential nodes identified by the DS method is more likely to lead to the disintegration of the network, which indicates that the DS method is more effective for identifying the key nodes in the network. To further validate the reliability of the proposed algorithm, we use the visibility graph algorithm to convert the GBP futures time series into a complex network and then rank the nodes in the network using the DS method. The results show that the top-ranked nodes correspond to the peaks and troughs of the time series, which represents the key turning points in price changes. By conducting an in-depth analysis, investors can uncover major events that influence price trends, once again confirming the effectiveness of the algorithm. |
| Audience | Academic |
| Author | Tan, Fu Chen, Xiaolong Cai, Shimin Chen, Rui Wang, Ruijie Huang, Chi |
| AuthorAffiliation | 1 School of Business Administration, Southwestern University of Finance and Economics, Chengdu 611130, China; ftan5967@gmail.com 3 Engineering Research Center of Intelligent Finance, Ministry of Education, Chengdu 611130, China 5 Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China; shimin.cai81@gmail.com 4 School of Mathematics, Aba Teachers College, Wenchuan 623002, China 2 School of Computing and Artificial Intelligence, Southwestern University of Finance and Economics, Chengdu 611130, China; chenxiaolong@swufe.edu.cn (X.C.); chenrui062@gmail.com (R.C.); huangchi@swufe.edu.cn (C.H.) |
| AuthorAffiliation_xml | – name: 3 Engineering Research Center of Intelligent Finance, Ministry of Education, Chengdu 611130, China – name: 5 Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China; shimin.cai81@gmail.com – name: 2 School of Computing and Artificial Intelligence, Southwestern University of Finance and Economics, Chengdu 611130, China; chenxiaolong@swufe.edu.cn (X.C.); chenrui062@gmail.com (R.C.); huangchi@swufe.edu.cn (C.H.) – name: 4 School of Mathematics, Aba Teachers College, Wenchuan 623002, China – name: 1 School of Business Administration, Southwestern University of Finance and Economics, Chengdu 611130, China; ftan5967@gmail.com |
| Author_xml | – sequence: 1 givenname: Fu surname: Tan fullname: Tan, Fu – sequence: 2 givenname: Xiaolong surname: Chen fullname: Chen, Xiaolong – sequence: 3 givenname: Rui surname: Chen fullname: Chen, Rui – sequence: 4 givenname: Ruijie surname: Wang fullname: Wang, Ruijie – sequence: 5 givenname: Chi surname: Huang fullname: Huang, Chi – sequence: 6 givenname: Shimin orcidid: 0000-0002-2089-5150 surname: Cai fullname: Cai, Shimin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40282641$$D View this record in MEDLINE/PubMed |
| BookMark | eNplUk1v1DAQtVAR_YADfwBF4gKHbf0VJz6hsioQqSqXcrYce7z1krUXOynsv8dh26otmoPt5zdv_GZ8jA5CDIDQW4JPGZP4DGiDeQnxAh0RLOWCM4wPHu0P0XHOa4wpo0S8Qocc05YKTo5Q11kIo3c7H1ZVF9wwzUc9VFfRQq4-6wy2iqG6uPWFaKC6voGYdpUP1TJutgP8qa5g_B3Tz9fopdNDhjd36wn68eXievltcfn9a7c8v1yYmpBxUTMHVArLeYM1MZo1QNu27ZmzDTa0h5Y1TksghBHrZF1AbBptCQFbYMpOULfXtVGv1Tb5jU47FbVX_4CYVkqn0ZsBVFsTSXqruRCYWyqkFo1tuROSmYb0omh92mttp34D1hTvSQ9PRJ_eBH-jVvFWEYppzWtWFD7cKaT4a4I8qo3PBoZBB4hTVowUC03L5Fzs_TPqOk4plF7NLF5L3pC2sE73rJUuDnxwsRQ2JSxsvClzd77g56VLpWu8rUvCu8ceHh5_P-NCONsTTIo5J3DK-FGPPs6W_KAIVvMvUg-_qGR8fJZxL_o_9y8_9sRN |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_129280 crossref_primary_10_1007_s11227_025_07658_0 |
| Cites_doi | 10.1038/nature03248 10.1038/nature08932 10.1016/j.ins.2024.120472 10.1038/s41467-021-24732-2 10.1016/j.neucom.2022.05.010 10.2307/3033543 10.1063/5.0033197 10.1073/pnas.0709247105 10.1080/0022250X.1972.9989806 10.1111/j.2517-6161.1968.tb00722.x 10.1038/ncomms10168 10.1016/j.physrep.2020.05.004 10.3390/e26110955 10.1016/j.chaos.2021.111307 10.1109/NSW.2013.6609212 10.1038/s42254-021-00322-5 10.1016/j.physa.2019.121538 10.1038/s41467-019-08746-5 10.1103/PhysRevE.100.032310 10.1038/s41598-022-09341-3 10.1016/j.neucom.2023.01.078 10.1038/s41567-022-01716-7 10.1038/s41467-023-41887-2 10.1109/TCNS.2023.3256273 10.1038/s41598-021-86469-8 10.1016/j.chaos.2018.04.033 10.1007/s11192-018-2908-2 10.1109/TSMC.2022.3158833 10.1007/s11432-022-3684-x 10.1093/pnasnexus/pgae377 10.3390/bdcc9030069 10.1016/j.chaos.2019.109548 10.1016/j.physa.2013.01.054 10.1016/j.chaos.2020.109772 10.1038/s41467-023-44257-0 10.1126/science.286.5439.509 10.1016/j.chaos.2022.112136 10.3233/JIFS-169684 10.1016/j.ipm.2010.05.002 10.1016/j.cam.2018.05.051 10.1016/S0375-9601(99)00757-4 10.1038/s41598-022-24652-1 10.1016/j.chaos.2022.112397 10.1038/s41598-021-03167-1 10.3390/e25091263 10.1007/s11424-021-0111-7 10.1016/j.ins.2024.120945 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU COVID DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.3390/e27040406 |
| DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College Coronavirus Research Database ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1099-4300 |
| ExternalDocumentID | oai_doaj_org_article_85191bda46604d269a67d84f693c71b6 PMC12025453 A837888485 40282641 10_3390_e27040406 |
| Genre | Journal Article |
| GeographicLocations | United Kingdom China |
| GeographicLocations_xml | – name: United Kingdom – name: China |
| GrantInformation_xml | – fundername: School-Level Research and Innovation Team Fund of Aba Teachers College grantid: AS-KCTD2023-03 – fundername: Natural Science Foundation of Sichuan Province grantid: 2022NSFSC0872 – fundername: School-Level Cultivation Key Project Fund of Aba Teachers College grantid: AS-PYZD2023-01 – fundername: Fundamental Research Funds for the Central Universities grantid: JBK2304067 – fundername: Applied Technology Research and Development Fund Project of Aba Prefecture grantid: R22YYJSYJ0003 – fundername: National Natural Science Foundation of China grantid: T2293771 – fundername: Teaching Quality Project Fund of Aba Teachers College grantid: 202407028 – fundername: 2024 Statistical Education Reform Project “Research on Teaching Reform of Statistics Courses in Universities in Ethnic Minority Areas Based on the OBE Concept” grantid: 2024JG0227 – fundername: National Natural Science Foundation of China grantid: 62106203; T2293771 |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC COVID DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c511t-53fe296d4470a1ca37e2888b3fd70c2be837fa9e1131df9570c0c7ad11eda9e23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001474891000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1099-4300 |
| IngestDate | Tue Oct 14 19:05:01 EDT 2025 Tue Nov 04 02:04:07 EST 2025 Fri Sep 05 17:23:25 EDT 2025 Fri Jul 25 11:54:15 EDT 2025 Tue Nov 04 18:14:49 EST 2025 Wed Apr 30 01:43:09 EDT 2025 Sat Nov 29 07:20:16 EST 2025 Tue Nov 18 21:28:19 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | influential node identification complex network visibility graph algorithm multi-attribute features Dempster–Shafer evidence theory |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c511t-53fe296d4470a1ca37e2888b3fd70c2be837fa9e1131df9570c0c7ad11eda9e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2089-5150 |
| OpenAccessLink | https://doaj.org/article/85191bda46604d269a67d84f693c71b6 |
| PMID | 40282641 |
| PQID | 3194594718 |
| PQPubID | 2032401 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_85191bda46604d269a67d84f693c71b6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12025453 proquest_miscellaneous_3195778396 proquest_journals_3194594718 gale_infotracacademiconefile_A837888485 pubmed_primary_40282641 crossref_citationtrail_10_3390_e27040406 crossref_primary_10_3390_e27040406 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-10 |
| PublicationDateYYYYMMDD | 2025-04-10 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationTitleAlternate | Entropy (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Lacasa (ref_48) 2008; 105 Engsig (ref_50) 2024; 15 Muntoni (ref_14) 2024; 3 Murphy (ref_4) 2021; 12 Freeman (ref_19) 1977; 40 Bardoscia (ref_13) 2021; 3 Fortunato (ref_10) 2022; 18 ref_16 ref_15 Li (ref_27) 2018; 320 Buldyrev (ref_11) 2010; 464 Luan (ref_20) 2021; 34 Wang (ref_28) 2018; 334 Li (ref_45) 2018; 117 Dempster (ref_42) 1968; 30 ref_24 ref_23 Chen (ref_5) 2016; 100 Ramirez (ref_12) 2023; 10 Mancastroppa (ref_34) 2023; 14 Kou (ref_26) 2023; 530 Kovalenko (ref_33) 2022; 162 ref_29 Xu (ref_37) 2024; 667 Seiti (ref_43) 2018; 35 Newman (ref_1) 1999; 263 Zhang (ref_25) 2022; 497 Broido (ref_9) 2019; 10 Battiston (ref_31) 2020; 874 Lung (ref_30) 2018; 117 ref_32 Lei (ref_38) 2022; 160 Xiong (ref_7) 2022; 52 Zhou (ref_17) 2016; 7 Kabir (ref_6) 2020; 132 Mo (ref_46) 2019; 529 Curado (ref_22) 2021; 406 Hao (ref_21) 2020; 135 Yan (ref_49) 2011; 47 Albert (ref_2) 1999; 286 Bonacich (ref_18) 1972; 2 Song (ref_3) 2005; 433 Xiong (ref_8) 2023; 66 ref_47 Serrano (ref_36) 2020; 382 ref_41 Wei (ref_44) 2013; 392 Li (ref_35) 2021; 152 Shang (ref_40) 2022; 31 Lee (ref_39) 2022; 677 |
| References_xml | – volume: 433 start-page: 392 year: 2005 ident: ref_3 article-title: Self-similarity of complex networks publication-title: Nature doi: 10.1038/nature03248 – volume: 464 start-page: 1025 year: 2010 ident: ref_11 article-title: Catastrophic cascade of failures in interdependent networks publication-title: Nature doi: 10.1038/nature08932 – volume: 406 start-page: 126269 year: 2021 ident: ref_22 article-title: Identifying mobility patterns by means of centrality algorithms in multiplex networks publication-title: Appl. Math. Comput. – volume: 667 start-page: 120472 year: 2024 ident: ref_37 article-title: MGL2Rank: Learning to rank the importance of nodes in road networks based on multi-graph fusion publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.120472 – volume: 12 start-page: 4720 year: 2021 ident: ref_4 article-title: Deep learning of contagion dynamics on complex networks publication-title: Nat. Commun. doi: 10.1038/s41467-021-24732-2 – volume: 497 start-page: 13 year: 2022 ident: ref_25 article-title: A new approach for evaluating node importance in complex networks via deep learning methods publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.05.010 – volume: 40 start-page: 35 year: 1977 ident: ref_19 article-title: A set of measures of centrality based on betweenness publication-title: Sociometry doi: 10.2307/3033543 – volume: 31 start-page: 033120 year: 2022 ident: ref_40 article-title: Identifying influential nodes: A new method based on network efficiency of edge weight updating publication-title: Chaos doi: 10.1063/5.0033197 – volume: 105 start-page: 4972 year: 2008 ident: ref_48 article-title: From time series to complex networks: The visibility graph publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0709247105 – volume: 2 start-page: 113 year: 1972 ident: ref_18 article-title: Factoring and weighting approaches to status scores and clique identification publication-title: J. Math. Sociol. doi: 10.1080/0022250X.1972.9989806 – volume: 30 start-page: 205 year: 1968 ident: ref_42 article-title: A generalization of Bayesian inference publication-title: J. R. Stat. Soc. B (Methodol.) doi: 10.1111/j.2517-6161.1968.tb00722.x – volume: 7 start-page: 10168 year: 2016 ident: ref_17 article-title: The H-index of a network node and its relation to degree and coreness publication-title: Nat. Commun. doi: 10.1038/ncomms10168 – volume: 874 start-page: 1 year: 2020 ident: ref_31 article-title: Networks beyond pairwise interactions: Structure and dynamics publication-title: Phys. Rep. doi: 10.1016/j.physrep.2020.05.004 – ident: ref_23 doi: 10.3390/e26110955 – volume: 152 start-page: 111307 year: 2021 ident: ref_35 article-title: Contagion in simplicial complexes publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111307 – ident: ref_32 doi: 10.1109/NSW.2013.6609212 – volume: 3 start-page: 490 year: 2021 ident: ref_13 article-title: The physics of financial networks publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00322-5 – volume: 529 start-page: 121538 year: 2019 ident: ref_46 article-title: Identifying node importance based on evidence theory in complex networks publication-title: Phys. A doi: 10.1016/j.physa.2019.121538 – volume: 10 start-page: 1017 year: 2019 ident: ref_9 article-title: Scale-free networks are rare publication-title: Nat. Commun. doi: 10.1038/s41467-019-08746-5 – volume: 100 start-page: 032310 year: 2016 ident: ref_5 article-title: Non-trivial resource amount requirement in the early stage for containing fatal diseases publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.100.032310 – ident: ref_41 doi: 10.1038/s41598-022-09341-3 – volume: 530 start-page: 23 year: 2023 ident: ref_26 article-title: Identify influential nodes in social networks with graph multi-head attention regression model publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.01.078 – volume: 18 start-page: 848 year: 2022 ident: ref_10 article-title: 20 years of network community detection publication-title: Nat. Phys. doi: 10.1038/s41567-022-01716-7 – volume: 14 start-page: 6223 year: 2023 ident: ref_34 article-title: Hyper-cores promote localization and efficient seeding in higher-order processes publication-title: Nat. Commun. doi: 10.1038/s41467-023-41887-2 – volume: 10 start-page: 1950 year: 2023 ident: ref_12 article-title: A stochastic model for cascading failures in financial networks publication-title: IEEE Trans. Control Netw. Syst. doi: 10.1109/TCNS.2023.3256273 – ident: ref_29 doi: 10.1038/s41598-021-86469-8 – volume: 334 start-page: 388 year: 2018 ident: ref_28 article-title: Improved centrality indicators to characterize the nodal spreading capability in complex networks publication-title: Appl. Math. Comput. – volume: 117 start-page: 283 year: 2018 ident: ref_45 article-title: Evidential identification of influential nodes in network of networks publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.04.033 – volume: 117 start-page: 1361 year: 2018 ident: ref_30 article-title: A hypergraph model for representing scientific output publication-title: Scientometrics doi: 10.1007/s11192-018-2908-2 – volume: 52 start-page: 7422 year: 2022 ident: ref_7 article-title: On designing learning control scheme for multilayer supply chain networks with constraints publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2022.3158833 – volume: 66 start-page: 190207 year: 2023 ident: ref_8 article-title: Iterative learning security control for discrete-time systems subject to deception and DoS attacks publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-022-3684-x – volume: 3 start-page: 377 year: 2024 ident: ref_14 article-title: Effectiveness of probabilistic contact tracing in epidemic containment: The role of superspreaders and transmission path reconstruction publication-title: PNAS Nexus doi: 10.1093/pnasnexus/pgae377 – ident: ref_47 doi: 10.3390/bdcc9030069 – volume: 132 start-page: 109548 year: 2020 ident: ref_6 article-title: The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network—A theoretical approach publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2019.109548 – volume: 392 start-page: 2564 year: 2013 ident: ref_44 article-title: Identifying influential nodes in weighted networks based on evidence theory publication-title: Phys. A doi: 10.1016/j.physa.2013.01.054 – volume: 135 start-page: 109772 year: 2020 ident: ref_21 article-title: Cascading failures in networks with the harmonic closeness under edge attack strategies publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109772 – volume: 382 start-page: 125331 year: 2020 ident: ref_36 article-title: Centrality measures in simplicial complexes: Applications of topological data analysis to network science publication-title: Appl. Math. Comput. – volume: 15 start-page: 56 year: 2024 ident: ref_50 article-title: DomiRank Centrality reveals structural fragility of complex networks via node dominance publication-title: Nat. Commun. doi: 10.1038/s41467-023-44257-0 – volume: 286 start-page: 509 year: 1999 ident: ref_2 article-title: Emergence of scaling in random networks publication-title: Science doi: 10.1126/science.286.5439.509 – volume: 160 start-page: 112136 year: 2022 ident: ref_38 article-title: Node influence ranking in complex networks: A local structure entropy approach publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2022.112136 – volume: 35 start-page: 1419 year: 2018 ident: ref_43 article-title: A risk-based fuzzy evidential framework for FMEA analysis under uncertainty: An interval-valued DS approach publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-169684 – volume: 47 start-page: 125 year: 2011 ident: ref_49 article-title: Discovering author impact: A PageRank perspective publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2010.05.002 – volume: 320 start-page: 512 year: 2018 ident: ref_27 article-title: Identification of influential spreaders based on classified neighbors in real-world complex networks publication-title: Appl. Math. Comput. doi: 10.1016/j.cam.2018.05.051 – volume: 263 start-page: 341 year: 1999 ident: ref_1 article-title: Renormalization group analysis of the small-world network model publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(99)00757-4 – ident: ref_15 doi: 10.1038/s41598-022-24652-1 – volume: 162 start-page: 112397 year: 2022 ident: ref_33 article-title: Vector centrality in hypergraphs publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2022.112397 – ident: ref_16 doi: 10.1038/s41598-021-03167-1 – ident: ref_24 doi: 10.3390/e25091263 – volume: 34 start-page: 2168 year: 2021 ident: ref_20 article-title: Identifying influential spreaders in complex networks by considering the impact of the number of shortest paths publication-title: J. Syst. Sci. Complex. doi: 10.1007/s11424-021-0111-7 – volume: 677 start-page: 120945 year: 2022 ident: ref_39 article-title: Identifying influential nodes on directed networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.120945 |
| SSID | ssj0023216 |
| Score | 2.3796222 |
| Snippet | Influential node identification is an important and hot topic in the field of complex network science. Classical algorithms for identifying influential nodes... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 406 |
| SubjectTerms | Accuracy Algorithms Analysis complex network Complexity COVID-19 vaccines Decision-making Dempster-Shafer Method Dempster–Shafer evidence theory Disease transmission Disintegration Effectiveness Financial institutions Graphs influential node identification Information sources Methods multi-attribute features Networks Neural networks Nodes Pandemics Propagation Reliability Social networks Time series Uncertainty visibility graph algorithm |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOBSQLxSCjIICS5R49ix41PVIip6WSEBUm-WX4GVVknZ3Vb9-Z1xvGFXIC5c7VHiZB6esWe-IeSdaxvhMHuqk4GXQgld2lZHMIbOaQcCVMUuNZtQs1l7caG_5AO3VU6r3NjEZKjD4PGM_AhERTQaTenx5a8Su0bh7WpuoXGX3EOUBJZS975OARevmRzRhDiE9kexViCyApsbbe1BCar_T4O8tSPtZktubT9nD_934Y_IfnY86ckoKY_Jndg_IedjnW6qdaLnY78SUPkFnQ0hrugpbHGBDj3d9B6lYyk_nfcUDcki3tDZmEf-lHw_-_Tt4-cyN1coPfhY67LhXay1DEKoyjJvuYo1RMOOd0FVvnYRItfO6sgYZ6HTDQxWXtnAWAwwXPNnZK8f-viCUMcc81LqwJ0SsgKPyynH28CqLrDG6YJ82Pxu4zPyODbAWBiIQJAzZuJMQd5OpJcj3MbfiE6RZxMBImSngWH5w2SFM-BJauaCFVJWItRSW6lCKzqpuVfMwUPeI8cN6jEsxttcjgCfhIhY5iQh7beibQpyuGGsyQq-Mr-5WpA30zSoJt632D4OV4mmUQo8UHjZ81GGpjULjHWlYAVpd6Rr56N2Z_r5zwT_zWpEMGj4wb_X9ZI8QEK8-WLVIdlbL6_iK3LfX6_nq-XrpCi34gccnw priority: 102 providerName: ProQuest |
| Title | Identifying Influential Nodes Based on Evidence Theory in Complex Network |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40282641 https://www.proquest.com/docview/3194594718 https://www.proquest.com/docview/3195778396 https://pubmed.ncbi.nlm.nih.gov/PMC12025453 https://doaj.org/article/85191bda46604d269a67d84f693c71b6 |
| Volume | 27 |
| WOSCitedRecordID | wos001474891000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M7S dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: PIMPY dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwoELAvEKu1QGIcEl2jh27Pi4RV3RA1HFQyqnKH5EVKrS1baLOO1vZyZOo1YgceGSg20lzrxHHn8D8NaWhbRUPdUqL1KppUmb0gQ0htYaiwKUhbZvNqGrqlwuzeKg1RfVhEV44Ei4c4wIDLe-kUpl0ufKNEr7UrbKCKe57cG2M232ydSQaomcq4gjJDCpPw-5RmGV1NbowPv0IP1_muIDX3RcJ3ngeC4fwcMhYmQXcaeP4U7onsA8XrDtLymxeWw0grq6ZtXGhy2bom_ybNOxfdNQFu_gs1XHyAKswy9WxQLwp_Dtcvb1w8d06IqQOgyOdmkh2pAb5aXUWcNdI3TIMY21ovU6c7kNmHK2jQmcC-5bU-Bg5nTjOQ8eh3PxDE66TRdeALPccqeU8cJqqTIMlay2ovQ8az0vrEng_Z5atRsgw6lzxbrG1IEIW4-ETeDNuPQq4mT8bdGUSD4uIGjrfgAZXg8Mr__F8ATeEcNqUkDcjGuGewT4SwRlVV_0EPmlLIsEzvY8rQfN3NZocmRhyCUn8HqcRp2ig5KmC5ubfk2hNYaO-LHnUQTGPUtKUpXkCZRHwnH0U8cz3epHj9vNc4IeKMTL_0GGU3hAr6ODLZ6dwcnu-ia8gvvu5261vZ7AXb0sJ3BvOqsWnye9bkyorPULPW9nOLOYf1p8_w0dYhPi |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQXHuKVUsAgEFyixrFjxweEWqDqqiVCoki9mTh2YKVV0u5uefwpfiMzzoNdgbj1wNVxEif5_M1MPJ6PkKc2z4TF7KlaOh4LJXRc5toDGVqrLQAo8XUQm1BFkZ-c6Pcb5OewFwbTKgdODETt2gr_ke8AVESmkUpfnZ7FqBqFq6uDhEYHi0P_4xuEbIuXkzfwfZ-l6f7b49cHca8qEFfgXCzjjNc-1dIJoZKSVSVXPoUw0PLaqaRKrYeQrS61Z4wzV-sMGpNKlY4x76AZCx0A5V8CNyLVIVXwwxjg8ZTJrnoR5zrZ8amCKSJQTGnF5gVpgD8NwIoFXM_OXDF3-9f_txd1g1zrHWu6282Em2TDN7fIpNuHHPZy0UmnxwKUNqNF6_yC7oEJd7Rt6KCtSrtSBXTaUCTKmf9Oiy5P_jb5eCGjv0M2m7bx9wi1zLJKSu24VUIm4FFaZXnuWFI7llkdkRfD5zVVX1kdBT5mBiIsRIIZkRCRJ2PX066cyN867SFGxg5YATw0tPPPpicUA56yZtaVQspEuFTqUiqXi1pqXilm4SLPEWEGeQoGU5X9dgt4JKz4ZXaDkkAu8iwi2wOQTE9gC_MbRRF5PB4G6sH1pLLx7XnokykFHjbc7G6H2XHMAmN5KVhE8jU0rz3U-pFm-iWUN2cpVmjI-Na_x_WIXDk4fndkjibF4X1yFU_CVT6WbJPN5fzcPyCXq6_L6WL-MExSSj5dNNh_Aa1Seko |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqLUJceIhXSgGDQHCJNn7Ejg8ItZQVq0K0B5DKKcSxAyutknZ3y-Ov8euYyYtdgbj1wNVxEif5_M1MPJ6PkCc2iaXF7KlSORFKLU2YJ8YDGVprLAAo8mUjNqHTNDk5MbMd8rPfC4NplT0nNkTt6gL_kY8BKjI2SKXjskuLmB1NXp6ehagghSutvZxGC5Fj_-MbhG-rF9Mj-NZPOZ-8fv_qTdgpDIQFOBrrMBal50Y5KXWUsyIX2nMICa0onY4Kbj2Eb2VuPGOCudLE0BgVOneMeQfNWPQA6H8XXHLJR2R3Nn03-ziEe4Iz1dYyEsJEY881TBiJ0kobFrARCvjTHGzYw-1czQ3jN7n2P7-26-Rq53LTg3aO3CA7vrpJpu0O5WaXF522Si1Adgua1s6v6CEYd0frivaqq7QtYkDnFUUKXfjvNG0z6G-RDxcy-ttkVNWVv0uoZZYVShknrJYqAl_TaisSx6LSsdiagDzvP3VWdDXXUfpjkUHshajIBlQE5PHQ9bQtNPK3ToeIl6ED1gZvGurl56yjmgx8aMOsy6VSkXRcmVxpl8hSGVFoZuEizxBtGTIYDKbIu40Y8EhYCyw7aDQGEpnEAdnvQZV11LbKfiMqII-Gw0BKuNKUV74-b_rEWoPvDTe70-J3GLPEKF9JFpBkC9lbD7V9pJp_aQqfM461G2Kx9-9xPSSXAePZ22l6fI9cwXNw-Y9F-2S0Xp77--RS8XU9Xy0fdDOWkk8XjfZfVVeEgA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Influential+Nodes+Based+on+Evidence+Theory+in+Complex+Network&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Tan%2C+Fu&rft.au=Chen%2C+Xiaolong&rft.au=Chen%2C+Rui&rft.au=Wang%2C+Ruijie&rft.date=2025-04-10&rft.pub=MDPI+AG&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=27&rft.issue=4&rft_id=info:doi/10.3390%2Fe27040406&rft.externalDocID=A837888485 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |