Identifying Influential Nodes Based on Evidence Theory in Complex Network

Influential node identification is an important and hot topic in the field of complex network science. Classical algorithms for identifying influential nodes are typically based on a single attribute of nodes or the simple fusion of a few attributes. However, these methods perform poorly in real net...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Entropy (Basel, Switzerland) Ročník 27; číslo 4; s. 406
Hlavní autoři: Tan, Fu, Chen, Xiaolong, Chen, Rui, Wang, Ruijie, Huang, Chi, Cai, Shimin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 10.04.2025
MDPI
Témata:
ISSN:1099-4300, 1099-4300
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Influential node identification is an important and hot topic in the field of complex network science. Classical algorithms for identifying influential nodes are typically based on a single attribute of nodes or the simple fusion of a few attributes. However, these methods perform poorly in real networks with high complexity and diversity. To address this issue, a new method based on the Dempster–Shafer (DS) evidence theory is proposed in this paper, which improves the efficiency of identifying influential nodes through the following three aspects. Firstly, Dempster–Shafer evidence theory quantifies uncertainty through its basic belief assignment function and combines evidence from different information sources, enabling it to effectively handle uncertainty. Secondly, Dempster–Shafer evidence theory processes conflicting evidence using Dempster’s rule of combination, enhancing the reliability of decision-making. Lastly, in complex networks, information may come from multiple dimensions, and the Dempster–Shafer theory can effectively integrate this multidimensional information. To verify the effectiveness of the proposed method, extensive experiments are conducted on real-world complex networks. The results show that, compared to the other algorithms, attacking the influential nodes identified by the DS method is more likely to lead to the disintegration of the network, which indicates that the DS method is more effective for identifying the key nodes in the network. To further validate the reliability of the proposed algorithm, we use the visibility graph algorithm to convert the GBP futures time series into a complex network and then rank the nodes in the network using the DS method. The results show that the top-ranked nodes correspond to the peaks and troughs of the time series, which represents the key turning points in price changes. By conducting an in-depth analysis, investors can uncover major events that influence price trends, once again confirming the effectiveness of the algorithm.
AbstractList Influential node identification is an important and hot topic in the field of complex network science. Classical algorithms for identifying influential nodes are typically based on a single attribute of nodes or the simple fusion of a few attributes. However, these methods perform poorly in real networks with high complexity and diversity. To address this issue, a new method based on the Dempster–Shafer (DS) evidence theory is proposed in this paper, which improves the efficiency of identifying influential nodes through the following three aspects. Firstly, Dempster–Shafer evidence theory quantifies uncertainty through its basic belief assignment function and combines evidence from different information sources, enabling it to effectively handle uncertainty. Secondly, Dempster–Shafer evidence theory processes conflicting evidence using Dempster’s rule of combination, enhancing the reliability of decision-making. Lastly, in complex networks, information may come from multiple dimensions, and the Dempster–Shafer theory can effectively integrate this multidimensional information. To verify the effectiveness of the proposed method, extensive experiments are conducted on real-world complex networks. The results show that, compared to the other algorithms, attacking the influential nodes identified by the DS method is more likely to lead to the disintegration of the network, which indicates that the DS method is more effective for identifying the key nodes in the network. To further validate the reliability of the proposed algorithm, we use the visibility graph algorithm to convert the GBP futures time series into a complex network and then rank the nodes in the network using the DS method. The results show that the top-ranked nodes correspond to the peaks and troughs of the time series, which represents the key turning points in price changes. By conducting an in-depth analysis, investors can uncover major events that influence price trends, once again confirming the effectiveness of the algorithm.
Influential node identification is an important and hot topic in the field of complex network science. Classical algorithms for identifying influential nodes are typically based on a single attribute of nodes or the simple fusion of a few attributes. However, these methods perform poorly in real networks with high complexity and diversity. To address this issue, a new method based on the Dempster-Shafer (DS) evidence theory is proposed in this paper, which improves the efficiency of identifying influential nodes through the following three aspects. Firstly, Dempster-Shafer evidence theory quantifies uncertainty through its basic belief assignment function and combines evidence from different information sources, enabling it to effectively handle uncertainty. Secondly, Dempster-Shafer evidence theory processes conflicting evidence using Dempster's rule of combination, enhancing the reliability of decision-making. Lastly, in complex networks, information may come from multiple dimensions, and the Dempster-Shafer theory can effectively integrate this multidimensional information. To verify the effectiveness of the proposed method, extensive experiments are conducted on real-world complex networks. The results show that, compared to the other algorithms, attacking the influential nodes identified by the DS method is more likely to lead to the disintegration of the network, which indicates that the DS method is more effective for identifying the key nodes in the network. To further validate the reliability of the proposed algorithm, we use the visibility graph algorithm to convert the GBP futures time series into a complex network and then rank the nodes in the network using the DS method. The results show that the top-ranked nodes correspond to the peaks and troughs of the time series, which represents the key turning points in price changes. By conducting an in-depth analysis, investors can uncover major events that influence price trends, once again confirming the effectiveness of the algorithm.Influential node identification is an important and hot topic in the field of complex network science. Classical algorithms for identifying influential nodes are typically based on a single attribute of nodes or the simple fusion of a few attributes. However, these methods perform poorly in real networks with high complexity and diversity. To address this issue, a new method based on the Dempster-Shafer (DS) evidence theory is proposed in this paper, which improves the efficiency of identifying influential nodes through the following three aspects. Firstly, Dempster-Shafer evidence theory quantifies uncertainty through its basic belief assignment function and combines evidence from different information sources, enabling it to effectively handle uncertainty. Secondly, Dempster-Shafer evidence theory processes conflicting evidence using Dempster's rule of combination, enhancing the reliability of decision-making. Lastly, in complex networks, information may come from multiple dimensions, and the Dempster-Shafer theory can effectively integrate this multidimensional information. To verify the effectiveness of the proposed method, extensive experiments are conducted on real-world complex networks. The results show that, compared to the other algorithms, attacking the influential nodes identified by the DS method is more likely to lead to the disintegration of the network, which indicates that the DS method is more effective for identifying the key nodes in the network. To further validate the reliability of the proposed algorithm, we use the visibility graph algorithm to convert the GBP futures time series into a complex network and then rank the nodes in the network using the DS method. The results show that the top-ranked nodes correspond to the peaks and troughs of the time series, which represents the key turning points in price changes. By conducting an in-depth analysis, investors can uncover major events that influence price trends, once again confirming the effectiveness of the algorithm.
Audience Academic
Author Tan, Fu
Chen, Xiaolong
Cai, Shimin
Chen, Rui
Wang, Ruijie
Huang, Chi
AuthorAffiliation 1 School of Business Administration, Southwestern University of Finance and Economics, Chengdu 611130, China; ftan5967@gmail.com
3 Engineering Research Center of Intelligent Finance, Ministry of Education, Chengdu 611130, China
5 Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China; shimin.cai81@gmail.com
4 School of Mathematics, Aba Teachers College, Wenchuan 623002, China
2 School of Computing and Artificial Intelligence, Southwestern University of Finance and Economics, Chengdu 611130, China; chenxiaolong@swufe.edu.cn (X.C.); chenrui062@gmail.com (R.C.); huangchi@swufe.edu.cn (C.H.)
AuthorAffiliation_xml – name: 3 Engineering Research Center of Intelligent Finance, Ministry of Education, Chengdu 611130, China
– name: 5 Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China; shimin.cai81@gmail.com
– name: 2 School of Computing and Artificial Intelligence, Southwestern University of Finance and Economics, Chengdu 611130, China; chenxiaolong@swufe.edu.cn (X.C.); chenrui062@gmail.com (R.C.); huangchi@swufe.edu.cn (C.H.)
– name: 4 School of Mathematics, Aba Teachers College, Wenchuan 623002, China
– name: 1 School of Business Administration, Southwestern University of Finance and Economics, Chengdu 611130, China; ftan5967@gmail.com
Author_xml – sequence: 1
  givenname: Fu
  surname: Tan
  fullname: Tan, Fu
– sequence: 2
  givenname: Xiaolong
  surname: Chen
  fullname: Chen, Xiaolong
– sequence: 3
  givenname: Rui
  surname: Chen
  fullname: Chen, Rui
– sequence: 4
  givenname: Ruijie
  surname: Wang
  fullname: Wang, Ruijie
– sequence: 5
  givenname: Chi
  surname: Huang
  fullname: Huang, Chi
– sequence: 6
  givenname: Shimin
  orcidid: 0000-0002-2089-5150
  surname: Cai
  fullname: Cai, Shimin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40282641$$D View this record in MEDLINE/PubMed
BookMark eNplUk1v1DAQtVAR_YADfwBF4gKHbf0VJz6hsioQqSqXcrYce7z1krUXOynsv8dh26otmoPt5zdv_GZ8jA5CDIDQW4JPGZP4DGiDeQnxAh0RLOWCM4wPHu0P0XHOa4wpo0S8Qocc05YKTo5Q11kIo3c7H1ZVF9wwzUc9VFfRQq4-6wy2iqG6uPWFaKC6voGYdpUP1TJutgP8qa5g_B3Tz9fopdNDhjd36wn68eXievltcfn9a7c8v1yYmpBxUTMHVArLeYM1MZo1QNu27ZmzDTa0h5Y1TksghBHrZF1AbBptCQFbYMpOULfXtVGv1Tb5jU47FbVX_4CYVkqn0ZsBVFsTSXqruRCYWyqkFo1tuROSmYb0omh92mttp34D1hTvSQ9PRJ_eBH-jVvFWEYppzWtWFD7cKaT4a4I8qo3PBoZBB4hTVowUC03L5Fzs_TPqOk4plF7NLF5L3pC2sE73rJUuDnxwsRQ2JSxsvClzd77g56VLpWu8rUvCu8ceHh5_P-NCONsTTIo5J3DK-FGPPs6W_KAIVvMvUg-_qGR8fJZxL_o_9y8_9sRN
CitedBy_id crossref_primary_10_1016_j_eswa_2025_129280
crossref_primary_10_1007_s11227_025_07658_0
Cites_doi 10.1038/nature03248
10.1038/nature08932
10.1016/j.ins.2024.120472
10.1038/s41467-021-24732-2
10.1016/j.neucom.2022.05.010
10.2307/3033543
10.1063/5.0033197
10.1073/pnas.0709247105
10.1080/0022250X.1972.9989806
10.1111/j.2517-6161.1968.tb00722.x
10.1038/ncomms10168
10.1016/j.physrep.2020.05.004
10.3390/e26110955
10.1016/j.chaos.2021.111307
10.1109/NSW.2013.6609212
10.1038/s42254-021-00322-5
10.1016/j.physa.2019.121538
10.1038/s41467-019-08746-5
10.1103/PhysRevE.100.032310
10.1038/s41598-022-09341-3
10.1016/j.neucom.2023.01.078
10.1038/s41567-022-01716-7
10.1038/s41467-023-41887-2
10.1109/TCNS.2023.3256273
10.1038/s41598-021-86469-8
10.1016/j.chaos.2018.04.033
10.1007/s11192-018-2908-2
10.1109/TSMC.2022.3158833
10.1007/s11432-022-3684-x
10.1093/pnasnexus/pgae377
10.3390/bdcc9030069
10.1016/j.chaos.2019.109548
10.1016/j.physa.2013.01.054
10.1016/j.chaos.2020.109772
10.1038/s41467-023-44257-0
10.1126/science.286.5439.509
10.1016/j.chaos.2022.112136
10.3233/JIFS-169684
10.1016/j.ipm.2010.05.002
10.1016/j.cam.2018.05.051
10.1016/S0375-9601(99)00757-4
10.1038/s41598-022-24652-1
10.1016/j.chaos.2022.112397
10.1038/s41598-021-03167-1
10.3390/e25091263
10.1007/s11424-021-0111-7
10.1016/j.ins.2024.120945
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e27040406
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
ProQuest SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_85191bda46604d269a67d84f693c71b6
PMC12025453
A837888485
40282641
10_3390_e27040406
Genre Journal Article
GeographicLocations United Kingdom
China
GeographicLocations_xml – name: United Kingdom
– name: China
GrantInformation_xml – fundername: School-Level Research and Innovation Team Fund of Aba Teachers College
  grantid: AS-KCTD2023-03
– fundername: Natural Science Foundation of Sichuan Province
  grantid: 2022NSFSC0872
– fundername: School-Level Cultivation Key Project Fund of Aba Teachers College
  grantid: AS-PYZD2023-01
– fundername: Fundamental Research Funds for the Central Universities
  grantid: JBK2304067
– fundername: Applied Technology Research and Development Fund Project of Aba Prefecture
  grantid: R22YYJSYJ0003
– fundername: National Natural Science Foundation of China
  grantid: T2293771
– fundername: Teaching Quality Project Fund of Aba Teachers College
  grantid: 202407028
– fundername: 2024 Statistical Education Reform Project “Research on Teaching Reform of Statistics Courses in Universities in Ethnic Minority Areas Based on the OBE Concept”
  grantid: 2024JG0227
– fundername: National Natural Science Foundation of China
  grantid: 62106203; T2293771
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
COVID
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c511t-53fe296d4470a1ca37e2888b3fd70c2be837fa9e1131df9570c0c7ad11eda9e23
IEDL.DBID M7S
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001474891000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Tue Oct 14 19:05:01 EDT 2025
Tue Nov 04 02:04:07 EST 2025
Fri Sep 05 17:23:25 EDT 2025
Fri Jul 25 11:54:15 EDT 2025
Tue Nov 04 18:14:49 EST 2025
Wed Apr 30 01:43:09 EDT 2025
Sat Nov 29 07:20:16 EST 2025
Tue Nov 18 21:28:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords influential node identification
complex network
visibility graph algorithm
multi-attribute features
Dempster–Shafer evidence theory
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-53fe296d4470a1ca37e2888b3fd70c2be837fa9e1131df9570c0c7ad11eda9e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2089-5150
OpenAccessLink https://www.proquest.com/docview/3194594718?pq-origsite=%requestingapplication%
PMID 40282641
PQID 3194594718
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_85191bda46604d269a67d84f693c71b6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12025453
proquest_miscellaneous_3195778396
proquest_journals_3194594718
gale_infotracacademiconefile_A837888485
pubmed_primary_40282641
crossref_citationtrail_10_3390_e27040406
crossref_primary_10_3390_e27040406
PublicationCentury 2000
PublicationDate 2025-04-10
PublicationDateYYYYMMDD 2025-04-10
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-10
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lacasa (ref_48) 2008; 105
Engsig (ref_50) 2024; 15
Muntoni (ref_14) 2024; 3
Murphy (ref_4) 2021; 12
Freeman (ref_19) 1977; 40
Bardoscia (ref_13) 2021; 3
Fortunato (ref_10) 2022; 18
ref_16
ref_15
Li (ref_27) 2018; 320
Buldyrev (ref_11) 2010; 464
Luan (ref_20) 2021; 34
Wang (ref_28) 2018; 334
Li (ref_45) 2018; 117
Dempster (ref_42) 1968; 30
ref_24
ref_23
Chen (ref_5) 2016; 100
Ramirez (ref_12) 2023; 10
Mancastroppa (ref_34) 2023; 14
Kou (ref_26) 2023; 530
Kovalenko (ref_33) 2022; 162
ref_29
Xu (ref_37) 2024; 667
Seiti (ref_43) 2018; 35
Newman (ref_1) 1999; 263
Zhang (ref_25) 2022; 497
Broido (ref_9) 2019; 10
Battiston (ref_31) 2020; 874
Lung (ref_30) 2018; 117
ref_32
Lei (ref_38) 2022; 160
Xiong (ref_7) 2022; 52
Zhou (ref_17) 2016; 7
Kabir (ref_6) 2020; 132
Mo (ref_46) 2019; 529
Curado (ref_22) 2021; 406
Hao (ref_21) 2020; 135
Yan (ref_49) 2011; 47
Albert (ref_2) 1999; 286
Bonacich (ref_18) 1972; 2
Song (ref_3) 2005; 433
Xiong (ref_8) 2023; 66
ref_47
Serrano (ref_36) 2020; 382
ref_41
Wei (ref_44) 2013; 392
Li (ref_35) 2021; 152
Shang (ref_40) 2022; 31
Lee (ref_39) 2022; 677
References_xml – volume: 433
  start-page: 392
  year: 2005
  ident: ref_3
  article-title: Self-similarity of complex networks
  publication-title: Nature
  doi: 10.1038/nature03248
– volume: 464
  start-page: 1025
  year: 2010
  ident: ref_11
  article-title: Catastrophic cascade of failures in interdependent networks
  publication-title: Nature
  doi: 10.1038/nature08932
– volume: 406
  start-page: 126269
  year: 2021
  ident: ref_22
  article-title: Identifying mobility patterns by means of centrality algorithms in multiplex networks
  publication-title: Appl. Math. Comput.
– volume: 667
  start-page: 120472
  year: 2024
  ident: ref_37
  article-title: MGL2Rank: Learning to rank the importance of nodes in road networks based on multi-graph fusion
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.120472
– volume: 12
  start-page: 4720
  year: 2021
  ident: ref_4
  article-title: Deep learning of contagion dynamics on complex networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24732-2
– volume: 497
  start-page: 13
  year: 2022
  ident: ref_25
  article-title: A new approach for evaluating node importance in complex networks via deep learning methods
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.05.010
– volume: 40
  start-page: 35
  year: 1977
  ident: ref_19
  article-title: A set of measures of centrality based on betweenness
  publication-title: Sociometry
  doi: 10.2307/3033543
– volume: 31
  start-page: 033120
  year: 2022
  ident: ref_40
  article-title: Identifying influential nodes: A new method based on network efficiency of edge weight updating
  publication-title: Chaos
  doi: 10.1063/5.0033197
– volume: 105
  start-page: 4972
  year: 2008
  ident: ref_48
  article-title: From time series to complex networks: The visibility graph
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0709247105
– volume: 2
  start-page: 113
  year: 1972
  ident: ref_18
  article-title: Factoring and weighting approaches to status scores and clique identification
  publication-title: J. Math. Sociol.
  doi: 10.1080/0022250X.1972.9989806
– volume: 30
  start-page: 205
  year: 1968
  ident: ref_42
  article-title: A generalization of Bayesian inference
  publication-title: J. R. Stat. Soc. B (Methodol.)
  doi: 10.1111/j.2517-6161.1968.tb00722.x
– volume: 7
  start-page: 10168
  year: 2016
  ident: ref_17
  article-title: The H-index of a network node and its relation to degree and coreness
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10168
– volume: 874
  start-page: 1
  year: 2020
  ident: ref_31
  article-title: Networks beyond pairwise interactions: Structure and dynamics
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2020.05.004
– ident: ref_23
  doi: 10.3390/e26110955
– volume: 152
  start-page: 111307
  year: 2021
  ident: ref_35
  article-title: Contagion in simplicial complexes
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111307
– ident: ref_32
  doi: 10.1109/NSW.2013.6609212
– volume: 3
  start-page: 490
  year: 2021
  ident: ref_13
  article-title: The physics of financial networks
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00322-5
– volume: 529
  start-page: 121538
  year: 2019
  ident: ref_46
  article-title: Identifying node importance based on evidence theory in complex networks
  publication-title: Phys. A
  doi: 10.1016/j.physa.2019.121538
– volume: 10
  start-page: 1017
  year: 2019
  ident: ref_9
  article-title: Scale-free networks are rare
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08746-5
– volume: 100
  start-page: 032310
  year: 2016
  ident: ref_5
  article-title: Non-trivial resource amount requirement in the early stage for containing fatal diseases
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.100.032310
– ident: ref_41
  doi: 10.1038/s41598-022-09341-3
– volume: 530
  start-page: 23
  year: 2023
  ident: ref_26
  article-title: Identify influential nodes in social networks with graph multi-head attention regression model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.01.078
– volume: 18
  start-page: 848
  year: 2022
  ident: ref_10
  article-title: 20 years of network community detection
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-022-01716-7
– volume: 14
  start-page: 6223
  year: 2023
  ident: ref_34
  article-title: Hyper-cores promote localization and efficient seeding in higher-order processes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41887-2
– volume: 10
  start-page: 1950
  year: 2023
  ident: ref_12
  article-title: A stochastic model for cascading failures in financial networks
  publication-title: IEEE Trans. Control Netw. Syst.
  doi: 10.1109/TCNS.2023.3256273
– ident: ref_29
  doi: 10.1038/s41598-021-86469-8
– volume: 334
  start-page: 388
  year: 2018
  ident: ref_28
  article-title: Improved centrality indicators to characterize the nodal spreading capability in complex networks
  publication-title: Appl. Math. Comput.
– volume: 117
  start-page: 283
  year: 2018
  ident: ref_45
  article-title: Evidential identification of influential nodes in network of networks
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.04.033
– volume: 117
  start-page: 1361
  year: 2018
  ident: ref_30
  article-title: A hypergraph model for representing scientific output
  publication-title: Scientometrics
  doi: 10.1007/s11192-018-2908-2
– volume: 52
  start-page: 7422
  year: 2022
  ident: ref_7
  article-title: On designing learning control scheme for multilayer supply chain networks with constraints
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2022.3158833
– volume: 66
  start-page: 190207
  year: 2023
  ident: ref_8
  article-title: Iterative learning security control for discrete-time systems subject to deception and DoS attacks
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-022-3684-x
– volume: 3
  start-page: 377
  year: 2024
  ident: ref_14
  article-title: Effectiveness of probabilistic contact tracing in epidemic containment: The role of superspreaders and transmission path reconstruction
  publication-title: PNAS Nexus
  doi: 10.1093/pnasnexus/pgae377
– ident: ref_47
  doi: 10.3390/bdcc9030069
– volume: 132
  start-page: 109548
  year: 2020
  ident: ref_6
  article-title: The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network—A theoretical approach
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.109548
– volume: 392
  start-page: 2564
  year: 2013
  ident: ref_44
  article-title: Identifying influential nodes in weighted networks based on evidence theory
  publication-title: Phys. A
  doi: 10.1016/j.physa.2013.01.054
– volume: 135
  start-page: 109772
  year: 2020
  ident: ref_21
  article-title: Cascading failures in networks with the harmonic closeness under edge attack strategies
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109772
– volume: 382
  start-page: 125331
  year: 2020
  ident: ref_36
  article-title: Centrality measures in simplicial complexes: Applications of topological data analysis to network science
  publication-title: Appl. Math. Comput.
– volume: 15
  start-page: 56
  year: 2024
  ident: ref_50
  article-title: DomiRank Centrality reveals structural fragility of complex networks via node dominance
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-44257-0
– volume: 286
  start-page: 509
  year: 1999
  ident: ref_2
  article-title: Emergence of scaling in random networks
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– volume: 160
  start-page: 112136
  year: 2022
  ident: ref_38
  article-title: Node influence ranking in complex networks: A local structure entropy approach
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2022.112136
– volume: 35
  start-page: 1419
  year: 2018
  ident: ref_43
  article-title: A risk-based fuzzy evidential framework for FMEA analysis under uncertainty: An interval-valued DS approach
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-169684
– volume: 47
  start-page: 125
  year: 2011
  ident: ref_49
  article-title: Discovering author impact: A PageRank perspective
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2010.05.002
– volume: 320
  start-page: 512
  year: 2018
  ident: ref_27
  article-title: Identification of influential spreaders based on classified neighbors in real-world complex networks
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.cam.2018.05.051
– volume: 263
  start-page: 341
  year: 1999
  ident: ref_1
  article-title: Renormalization group analysis of the small-world network model
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(99)00757-4
– ident: ref_15
  doi: 10.1038/s41598-022-24652-1
– volume: 162
  start-page: 112397
  year: 2022
  ident: ref_33
  article-title: Vector centrality in hypergraphs
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2022.112397
– ident: ref_16
  doi: 10.1038/s41598-021-03167-1
– ident: ref_24
  doi: 10.3390/e25091263
– volume: 34
  start-page: 2168
  year: 2021
  ident: ref_20
  article-title: Identifying influential spreaders in complex networks by considering the impact of the number of shortest paths
  publication-title: J. Syst. Sci. Complex.
  doi: 10.1007/s11424-021-0111-7
– volume: 677
  start-page: 120945
  year: 2022
  ident: ref_39
  article-title: Identifying influential nodes on directed networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.120945
SSID ssj0023216
Score 2.3797104
Snippet Influential node identification is an important and hot topic in the field of complex network science. Classical algorithms for identifying influential nodes...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 406
SubjectTerms Accuracy
Algorithms
Analysis
complex network
Complexity
COVID-19 vaccines
Decision-making
Dempster-Shafer Method
Dempster–Shafer evidence theory
Disease transmission
Disintegration
Effectiveness
Financial institutions
Graphs
influential node identification
Information sources
Methods
multi-attribute features
Networks
Neural networks
Nodes
Pandemics
Propagation
Reliability
Social networks
Time series
Uncertainty
visibility graph algorithm
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9wwDBel7KEvY6PtlrUr7hhsL6Fx7NjxYztaWhjHHrrRN-PzBzs4cqV3LfvzJ8W5cMcGfemrLRJbsiwJSz8BfE6uiTgTSmWCLqXQrmwpmSq0vnJCcZ6B539915NJe3dnfmy0-qKcsAwPnBl3hh6B4dPgpFKVDLUyTunQyqSM8JpPe7DtSpt1MDWEWqLmKuMICQzqz2Kt8bBKamu0YX16kP5_r-INW7SdJ7lheK7ewOvBY2TneaVvYSd2-3CTC2z7IiV2kxuNoK7O2WQR4pJdoG0KbNGxddNQlmvw2axjdAPM4x82yQngB_Dz6vL223U5dEUoPTpHq7IRKdZGBSl15bh3Qscaw9ipSEFXvp5GDDmTM5FzwUMyDQ5WXrvAeQw4XItD2O0WXXwPLKGGC-GdSZWX6Bo4o6PnJmnqxiFFKODrmlvWD5Dh1LlibjF0IMbakbEFfBpJ7zNOxv-ILojlIwFBW_cDKHA7CNw-J_ACvpDALCkgLsa7oY4At0RQVva8h8hvZdsUcLyWqR00c2nxypGNIZNcwOk4jTpFDyWui4vHnqbRGl1H_Nm7fATGNUsKUpXkBbRbh2NrU9sz3ex3j9vNa4IeaMSHl2DDEezR5-hhi1fHsLt6eIwf4ZV_Ws2WDye9NvwF3sANsw
  priority: 102
  providerName: Directory of Open Access Journals
Title Identifying Influential Nodes Based on Evidence Theory in Complex Network
URI https://www.ncbi.nlm.nih.gov/pubmed/40282641
https://www.proquest.com/docview/3194594718
https://www.proquest.com/docview/3195778396
https://pubmed.ncbi.nlm.nih.gov/PMC12025453
https://doaj.org/article/85191bda46604d269a67d84f693c71b6
Volume 27
WOSCitedRecordID wos001474891000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfYxoELA_GVbVQGIcElWhw7dnxC69SJShBVfKmcItd2RqUqGW03ceJv5z0nzVqBuHDJwX5K7LwPv2c__x4hryqTeehxsdROxYIrE-eYTOVymxguGWuB57--V0WRT6d60m24rbq0yo1NDIbaNRb3yE9BVESm0ZS-vfoRY9UoPF3tSmjskQNESWAhde9TH3DxlMkWTYhDaH_qUwUiK7C40dYaFKD6_zTIWyvSbrbk1vJzcfi_A39A7neOJz1rJeUhuePrR2Tc3tMNd53ouK1XAiq_oEXj_IoOYYlztKnppvYoba_y03lN0ZAs_E9atHnkj8mXi9Hn83dxV1whtuBjreOMVz7V0gmhEsOs4cqnEA3PeOVUYtOZh8i1MtozxpmrdAaNiVXGMeYdNKf8Cdmvm9o_I7QCQ8G5NbpKrAAPw2jlLdOVwqIegruIvNn87tJ2yONYAGNRQgSCnCl7zkTkZU961cJt_I1oiDzrCRAhOzQ0y8uyU7gSPEnNZs4IKRPhUqmNVC4XldTcKjaDl7xGjpeoxzAYa7rrCDAlRMQqzwLSfi7yLCInG8aWnYKvyluuRuRF3w2qiectpvbNdaDJlAIPFD72tJWhfswCY10pWETyHenamdRuTz3_HuC_WYoIBhk_-ve4jsk9JMSTL5ackP318to_J3ftzXq-Wg7InprmA3IwHBWTj4OwEzEIyoPPXyPomYw_TL79Bhx3Iyc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQXHuKVUsAgEFyixrFjxweEWqDqqkuEREG9pV7bgZVWSbu75fGn-I3MxEnYFYhbD1xtb-JsPn8zE4-_IeRpZTIPPS6W2qlYcGXiHJOpXG4TwyVjQXj-01gVRX58rN9vkJ_9WRhMq-w5sSVq11j8Rr4DUBGZRip9dXoWY9Uo3F3tS2gEWBz6H98gZFu8HL2B9_ssTfffHr0-iLuqArEF52IZZ7zyqZZOCJUYZg1XPoUwcMIrpxKbTjyEbJXRnjHOXKUzaEysMo4x76AZhQ6A8i-BG5HqNlXwwxDg8ZTJoF7EuU52fKpgiQgsprRi89rSAH8agBULuJ6duWLu9q__b3_UDXKtc6zpblgJN8mGr2-RUTiH3J7loqNQjwUobUaLxvkF3QMT7mhT0762Kg1SBXRaUyTKmf9Oi5Anf5t8vJDZ3yGbdVP7e4RWQIScW6OrxArwoIxW3jJdKSxaIriLyIv-9Za2U1bHAh-zEiIsREI5ICEiT4ahp0FO5G-D9hAjwwBUAG8bmvnnsiOUEjxlzSbOCCkT4VKpjVQuF5XU3Co2gYs8R4SVyFMwGWu64xbwSKj4Ve62lQRykWcR2e6BVHYEtih_oygij4duoB7cTzK1b87bMZlS4GHDze4GzA5zFhjLS8Eikq-hee2h1nvq6ZdW3pylqNCQ8a1_z-sRuXJw9G5cjkfF4X1yFX-Eu3ws2Saby_m5f0Au26_L6WL-sF2klJxcNNh_AQ5Ueng
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELZWXYS48BCvwAIGgeASNY6dOD4gtMtSEe0S9QBoORnXdqBSlSxtl8df49cxkxetQNz2wNV2E6f5_M1MPP6GkMelSTz0uDBVToaCSxNmmEzlMhsZnjLWCs-_P5ZFkZ2cqOkO-dmfhcG0yp4TG6J2tcVv5GOAikgUUum47NIipoeTF6dfQqwghTutfTmNFiJH_sc3CN9Wz_NDeNdP4njy6u3L12FXYSC04Gisw4SXPlapE0JGhlnDpY8hJJzx0snIxjMP4VtplGeMM1eqBBojK41jzDtoRtEDoP9dcMlFPCK70_zN9MMQ7vGYpa2WEecqGvtYwoIRWFppwwI2hQL-NAcb9nA7V3PD-E2u_M9_21VyuXO56X67Rq6RHV9dJ3l7Qrk55UXztlILkN2CFrXzK3oAxt3RuqJ91VXaihjQeUWRQhf-Oy3aDPob5N25zP4mGVV15W8TWgJFcm6NKiMrwLcySnrLVCmxnIngLiDP-letbae5jqU_FhpiL0SFHlARkEfD0NNWaORvgw4QL8MA1AZvGurlJ91RjQYfWrGZMyJNI-HiVJlUukyUqeJWshlc5CmiTSODwWSs6Q5iwCOhFpjeb2oMZCJLArLXg0p31LbSvxEVkIdDN5AS7jSZytdnzZhESvC94Wa3WvwOcxYY5aeCBSTbQvbWQ233VPPPjfA5i1G7IeF3_j2vB-QiYFwf58XRXXIJf4PbfyzaI6P18szfIxfs1_V8tbzfrVhKPp432n8BvxqErg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Influential+Nodes+Based+on+Evidence+Theory+in+Complex+Network&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Tan%2C+Fu&rft.au=Chen%2C+Xiaolong&rft.au=Chen%2C+Rui&rft.au=Wang%2C+Ruijie&rft.date=2025-04-10&rft.pub=MDPI&rft.eissn=1099-4300&rft.volume=27&rft.issue=4&rft_id=info:doi/10.3390%2Fe27040406&rft.externalDocID=PMC12025453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon