Obstacle Avoidance Technique for Mobile Robots at Autonomous Human-Robot Collaborative Warehouse Environments

This paper presents an obstacle avoidance technique for a mobile robot in human-robot collaborative (HRC) tasks. The proposed solution uses fuzzy logic rules and a convolutional neural network (CNN) in an integrated approach to detect objects during vehicle movement. The goal is to improve the robot...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 25; číslo 8; s. 2387
Hlavní autoři: Sousa, Lucas C., Silva, Yago M. R., Schettino, Vinícius B., Santos, Tatiana M. B., Zachi, Alessandro R. L., Gouvêa, Josiel A., Pinto, Milena F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 09.04.2025
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents an obstacle avoidance technique for a mobile robot in human-robot collaborative (HRC) tasks. The proposed solution uses fuzzy logic rules and a convolutional neural network (CNN) in an integrated approach to detect objects during vehicle movement. The goal is to improve the robot’s navigation autonomously and ensure the safety of people and equipment in dynamic environments. Using this technique, it is possible to provide important references to the robot’s internal control system, guiding it to continuously adjust its velocity and yaw in order to avoid obstacles (humans and moving objects) while following the path planned for its task. The approach aims to improve operational safety without compromising productivity, addressing critical challenges in collaborative robotics. The system was tested in a simulated environment using the Robot Operating System (ROS) and Gazebo to demonstrate the effectiveness of navigation and obstacle avoidance. The results obtained with the application of the proposed technique indicate that the framework allows real-time adaptation and safe interaction between robot and obstacles in complex and changing industrial workspaces.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25082387