Model-based clustering for multivariate functional data

The first model-based clustering algorithm for multivariate functional data is proposed. After introducing multivariate functional principal components analysis (MFPCA), a parametric mixture model, based on the assumption of normality of the principal component scores, is defined and estimated by an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis Jg. 71; S. 92 - 106
Hauptverfasser: Jacques, Julien, Preda, Cristian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.03.2014
Elsevier
Schlagworte:
ISSN:0167-9473, 1872-7352
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The first model-based clustering algorithm for multivariate functional data is proposed. After introducing multivariate functional principal components analysis (MFPCA), a parametric mixture model, based on the assumption of normality of the principal component scores, is defined and estimated by an EM-like algorithm. The main advantage of the proposed model is its ability to take into account the dependence among curves. Results on simulated and real datasets show the efficiency of the proposed method.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2012.12.004