A Cartesian-Based Trajectory Optimization with Jerk Constraints for a Robot

To address the time-optimal trajectory planning (TOTP) problem with joint jerk constraints in a Cartesian coordinate system, we propose a time-optimal path-parameterization (TOPP) algorithm based on nonlinear optimization. The key insight of our approach is the presentation of a comprehensive and ef...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Entropy (Basel, Switzerland) Ročník 25; číslo 4; s. 610
Hlavní autoři: Fan, Zhiwei, Jia, Kai, Zhang, Lei, Zou, Fengshan, Du, Zhenjun, Liu, Mingmin, Cao, Yuting, Zhang, Qiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 03.04.2023
MDPI
Témata:
ISSN:1099-4300, 1099-4300
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:To address the time-optimal trajectory planning (TOTP) problem with joint jerk constraints in a Cartesian coordinate system, we propose a time-optimal path-parameterization (TOPP) algorithm based on nonlinear optimization. The key insight of our approach is the presentation of a comprehensive and effective iterative optimization framework for solving the optimal control problem (OCP) formulation of the TOTP problem in the (s,s˙)-phase plane. In particular, we identify two major difficulties: establishing TOPP in Cartesian space satisfying third-order constraints in joint space, and finding an efficient computational solution to TOPP, which includes nonlinear constraints. Experimental results demonstrate that the proposed method is an effective solution for time-optimal trajectory planning with joint jerk limits, and can be applied to a wide range of robotic systems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e25040610