Multi-Type Missing Imputation of Time-Series Power Equipment Monitoring Data Based on Moving Average Filter–Asymmetric Denoising Autoencoder

Supervisory control and data acquisition (SCADA) systems are widely utilized in power equipment for condition monitoring. For the collected data, there generally exists a problem—missing data of different types and patterns. This leads to the poor quality and utilization difficulties of the collecte...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 24; p. 9697
Main Authors: Jiang, Ling, Gu, Juping, Zhang, Xinsong, Hua, Liang, Cai, Yueming
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 08.12.2023
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Supervisory control and data acquisition (SCADA) systems are widely utilized in power equipment for condition monitoring. For the collected data, there generally exists a problem—missing data of different types and patterns. This leads to the poor quality and utilization difficulties of the collected data. To address this problem, this paper customizes methodology that combines an asymmetric denoising autoencoder (ADAE) and moving average filter (MAF) to perform accurate missing data imputation. First, convolution and gated recurrent unit (GRU) are applied to the encoder of the ADAE, while the decoder still utilizes the fully connected layers to form an asymmetric network structure. The ADAE extracts the local periodic and temporal features from monitoring data and then decodes the features to realize the imputation of the multi-type missing. On this basis, according to the continuity of power data in the time domain, the MAF is utilized to fuse the prior knowledge of the neighborhood of missing data to secondarily optimize the imputed data. Case studies reveal that the developed method achieves greater accuracy compared to existing models. This paper adopts experiments under different scenarios to justify that the MAF-ADAE method applies to actual power equipment monitoring data imputation.
AbstractList Supervisory control and data acquisition (SCADA) systems are widely utilized in power equipment for condition monitoring. For the collected data, there generally exists a problem-missing data of different types and patterns. This leads to the poor quality and utilization difficulties of the collected data. To address this problem, this paper customizes methodology that combines an asymmetric denoising autoencoder (ADAE) and moving average filter (MAF) to perform accurate missing data imputation. First, convolution and gated recurrent unit (GRU) are applied to the encoder of the ADAE, while the decoder still utilizes the fully connected layers to form an asymmetric network structure. The ADAE extracts the local periodic and temporal features from monitoring data and then decodes the features to realize the imputation of the multi-type missing. On this basis, according to the continuity of power data in the time domain, the MAF is utilized to fuse the prior knowledge of the neighborhood of missing data to secondarily optimize the imputed data. Case studies reveal that the developed method achieves greater accuracy compared to existing models. This paper adopts experiments under different scenarios to justify that the MAF-ADAE method applies to actual power equipment monitoring data imputation.
Supervisory control and data acquisition (SCADA) systems are widely utilized in power equipment for condition monitoring. For the collected data, there generally exists a problem-missing data of different types and patterns. This leads to the poor quality and utilization difficulties of the collected data. To address this problem, this paper customizes methodology that combines an asymmetric denoising autoencoder (ADAE) and moving average filter (MAF) to perform accurate missing data imputation. First, convolution and gated recurrent unit (GRU) are applied to the encoder of the ADAE, while the decoder still utilizes the fully connected layers to form an asymmetric network structure. The ADAE extracts the local periodic and temporal features from monitoring data and then decodes the features to realize the imputation of the multi-type missing. On this basis, according to the continuity of power data in the time domain, the MAF is utilized to fuse the prior knowledge of the neighborhood of missing data to secondarily optimize the imputed data. Case studies reveal that the developed method achieves greater accuracy compared to existing models. This paper adopts experiments under different scenarios to justify that the MAF-ADAE method applies to actual power equipment monitoring data imputation.Supervisory control and data acquisition (SCADA) systems are widely utilized in power equipment for condition monitoring. For the collected data, there generally exists a problem-missing data of different types and patterns. This leads to the poor quality and utilization difficulties of the collected data. To address this problem, this paper customizes methodology that combines an asymmetric denoising autoencoder (ADAE) and moving average filter (MAF) to perform accurate missing data imputation. First, convolution and gated recurrent unit (GRU) are applied to the encoder of the ADAE, while the decoder still utilizes the fully connected layers to form an asymmetric network structure. The ADAE extracts the local periodic and temporal features from monitoring data and then decodes the features to realize the imputation of the multi-type missing. On this basis, according to the continuity of power data in the time domain, the MAF is utilized to fuse the prior knowledge of the neighborhood of missing data to secondarily optimize the imputed data. Case studies reveal that the developed method achieves greater accuracy compared to existing models. This paper adopts experiments under different scenarios to justify that the MAF-ADAE method applies to actual power equipment monitoring data imputation.
Audience Academic
Author Zhang, Xinsong
Hua, Liang
Gu, Juping
Jiang, Ling
Cai, Yueming
AuthorAffiliation 2 School of Electrical and Information Engineering, Suzhou University of Science and Technology, Suzhou 215101, China
1 School of Information Science and Technology, Nantong University, Nantong 226019, China; 2010510006@stmail.ntu.edu.cn
3 School of Electrical Engineering, Nantong University, Nantong 226019, China; zhang.xs@ntu.edu.cn (X.Z.); hualiang@ntu.edu.cn (L.H.)
4 NARI Technology Company Limited, NARI Group Corporation, Nanjing 211106, China; 13951969176@163.com
AuthorAffiliation_xml – name: 2 School of Electrical and Information Engineering, Suzhou University of Science and Technology, Suzhou 215101, China
– name: 1 School of Information Science and Technology, Nantong University, Nantong 226019, China; 2010510006@stmail.ntu.edu.cn
– name: 4 NARI Technology Company Limited, NARI Group Corporation, Nanjing 211106, China; 13951969176@163.com
– name: 3 School of Electrical Engineering, Nantong University, Nantong 226019, China; zhang.xs@ntu.edu.cn (X.Z.); hualiang@ntu.edu.cn (L.H.)
Author_xml – sequence: 1
  givenname: Ling
  orcidid: 0000-0001-9993-3342
  surname: Jiang
  fullname: Jiang, Ling
– sequence: 2
  givenname: Juping
  orcidid: 0000-0003-0078-4602
  surname: Gu
  fullname: Gu, Juping
– sequence: 3
  givenname: Xinsong
  surname: Zhang
  fullname: Zhang, Xinsong
– sequence: 4
  givenname: Liang
  surname: Hua
  fullname: Hua, Liang
– sequence: 5
  givenname: Yueming
  surname: Cai
  fullname: Cai, Yueming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38139543$$D View this record in MEDLINE/PubMed
BookMark eNptks9uGyEQxlGVqkncHvoC1Uq9tIdNYGG9y6ly86e1FKuV6jvCMLhYu-AA68q3PkEvfcM-SXGcWklUcQCG33www3eKjpx3gNBrgs8o5fg8VrRifMybZ-iEsIqVbVXhowfrY3Qa4wrjilLavkDHtCWU14yeoF-zoUu2nG_XUMxsjNYti2m_HpJM1rvCm2Jueyi_QbAQi6_-B4Ti6naw6x5cKmbe2eTDLulSJll8lBF0kfNmfrMLTjYQ5BKKa9slCH9-_p7Ebd9DClYVl-C8vbtvMiQPTnkN4SV6bmQX4dX9PELz66v5xefy5sun6cXkplQ15qnkWkOtCRjK2vGCYhjrtsUM571pDOGcEa7woiYLoikjWHKoNBBWa4yNlnSEpntZ7eVKrIPtZdgKL624C_iwFDIkqzoQCrdUNozXmhPWLmpOCaVGGcUMpkSbrPVhr7UeFj1olfsSZPdI9PGJs9_F0m8EwQ1r2vwTI_TuXiH42wFiEr2NCrpOOvBDFBXHdV01mLCMvn2CrvwQXG7VjmKc5h_GmTrbU0uZK7DO-HyxykNDb1X2jrE5PmkaXrWMkiYnvHlYw-Hx_3ySgfd7QAUfYwBzQAgWOw-Kgwcze_6EVXZvp_wK2_0n4y8gLN84
CitedBy_id crossref_primary_10_1103_PhysRevD_111_024067
crossref_primary_10_2196_53719
Cites_doi 10.3390/s20061772
10.1093/ije/dyu080
10.1016/j.apenergy.2022.119292
10.1109/ACCESS.2020.3000557
10.1109/ACCESS.2021.3052142
10.1109/ICCV48922.2021.00082
10.1109/TSG.2019.2960043
10.1109/TDEI.2015.005532
10.1109/TSG.2020.3028501
10.1109/TSG.2018.2864176
10.1016/j.trc.2020.102673
10.1109/TPWRS.2015.2413935
10.35833/MPCE.2020.000894
10.1007/s40565-016-0213-8
10.1016/j.apenergy.2021.117655
10.1109/TSG.2016.2580002
10.1109/TIM.2015.2485339
10.1109/TPWRS.2019.2922671
10.3390/s21227731
10.1109/TSG.2020.2986439
10.1109/TPAMI.2012.271
10.1109/ACCESS.2017.2740968
10.1109/TCYB.2021.3121312
10.1109/TPWRS.2014.2347047
10.1016/j.asoc.2022.109903
10.1016/j.scs.2019.101900
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s23249697
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


CrossRef
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c083a7495d9148b593133fcfc4f031df
PMC10747881
A779284317
38139543
10_3390_s23249697
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61973178
– fundername: National Natural Science Foundation of China
  grantid: 52377117
– fundername: National Natural Science Foundation of China
  grantid: U2066203
– fundername: Key Research and Development Plan of Jiangsu Province
  grantid: BE2021063
– fundername: National Natural Science Foundation of China
  grantid: 61973178; 52377117
– fundername: Key Program of National Natural Science Foundation of China
  grantid: U2066203
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c509t-9dde5d1ef3486b30e6d88040f34f7f199419c0b51b1d3410a9e2de145d00fda3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001136017400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:52:06 EDT 2025
Tue Nov 04 02:06:08 EST 2025
Fri Sep 05 06:27:27 EDT 2025
Tue Oct 07 07:40:28 EDT 2025
Tue Nov 04 18:28:48 EST 2025
Mon Jul 21 05:31:04 EDT 2025
Sat Nov 29 07:14:26 EST 2025
Tue Nov 18 22:07:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords moving average filter
data imputation
asymmetric denoising autoencoder
power equipment monitoring data
multi-type missing
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-9dde5d1ef3486b30e6d88040f34f7f199419c0b51b1d3410a9e2de145d00fda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0078-4602
0000-0001-9993-3342
OpenAccessLink https://doaj.org/article/c083a7495d9148b593133fcfc4f031df
PMID 38139543
PQID 2904932330
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c083a7495d9148b593133fcfc4f031df
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10747881
proquest_miscellaneous_2905527014
proquest_journals_2904932330
gale_infotracacademiconefile_A779284317
pubmed_primary_38139543
crossref_primary_10_3390_s23249697
crossref_citationtrail_10_3390_s23249697
PublicationCentury 2000
PublicationDate 20231208
PublicationDateYYYYMMDD 2023-12-08
PublicationDate_xml – month: 12
  year: 2023
  text: 20231208
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zheng (ref_24) 2021; 52
Gao (ref_10) 2015; 31
Cui (ref_2) 2019; 11
Vincent (ref_22) 2010; 11
ref_31
James (ref_16) 2018; 10
ref_30
Syed (ref_27) 2021; 9
Wang (ref_4) 2016; 65
ref_18
Meng (ref_28) 2020; 53
Liao (ref_12) 2018; 10
Chen (ref_15) 2020; 117
Montanari (ref_1) 2020; 12
Liao (ref_7) 2021; 10
Dai (ref_20) 2017; 5
Li (ref_21) 2022; 320
ref_25
Huang (ref_9) 2016; 4
Hussein (ref_5) 2016; 23
ref_23
Konstantinopoulos (ref_13) 2020; 11
Ren (ref_19) 2019; 34
Yao (ref_3) 2016; 9
Jones (ref_14) 2014; 30
ref_29
Jeong (ref_17) 2021; 304
ref_8
Hong (ref_26) 2020; 8
Sun (ref_32) 2023; 132
Hu (ref_11) 2012; 35
Bhaskaran (ref_6) 2014; 43
References_xml – ident: ref_30
– ident: ref_18
  doi: 10.3390/s20061772
– volume: 43
  start-page: 1336
  year: 2014
  ident: ref_6
  article-title: What is the difference between missing completely at random and missing at random?
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyu080
– volume: 320
  start-page: 119292
  year: 2022
  ident: ref_21
  article-title: Data cleaning and restoring method for vehicle battery big data platform
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119292
– volume: 8
  start-page: 107244
  year: 2020
  ident: ref_26
  article-title: Kick: Shift-N-Overlap cascades of transposed convolutional layer for better autoencoding reconstruction on remote sensing imagery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3000557
– volume: 9
  start-page: 13198
  year: 2021
  ident: ref_27
  article-title: Moving Regression Filtering with Battery State of Charge Feedback Control for Solar PV Firming and Ramp Rate Curtailment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3052142
– ident: ref_25
  doi: 10.1109/ICCV48922.2021.00082
– volume: 11
  start-page: 2688
  year: 2019
  ident: ref_2
  article-title: Synchrophasor-based condition monitoring of instrument transformers using clustering approach
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2019.2960043
– volume: 23
  start-page: 1453
  year: 2016
  ident: ref_5
  article-title: Denoising of acoustic partial discharge signals corrupted with random noise
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2015.005532
– volume: 12
  start-page: 1206
  year: 2020
  ident: ref_1
  article-title: Self-Assessment of Health Conditions of Electrical Assets and Grid Components: A Contribution to Smart Grids
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.3028501
– volume: 10
  start-page: 4554
  year: 2018
  ident: ref_12
  article-title: An Alternating Direction Method of Multipliers Based Approach for PMU Data Recovery
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2864176
– volume: 117
  start-page: 102673
  year: 2020
  ident: ref_15
  article-title: A nonconvex low-rank tensor completion model for spatiotemporal traffic data imputation
  publication-title: Transp. Res. Part C-Emerg. Technol.
  doi: 10.1016/j.trc.2020.102673
– volume: 31
  start-page: 1006
  year: 2015
  ident: ref_10
  article-title: Missing data recovery by exploiting Low-dimensionality in power system synchrophasor measurements
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2413935
– volume: 10
  start-page: 964
  year: 2021
  ident: ref_7
  article-title: Data-driven missing data imputation for wind farms using context encoder
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.35833/MPCE.2020.000894
– ident: ref_8
– ident: ref_31
– ident: ref_29
– volume: 4
  start-page: 353
  year: 2016
  ident: ref_9
  article-title: Data quality issues for synchrophasor applications Part II: Problem formulation and potential solutions
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.1007/s40565-016-0213-8
– volume: 304
  start-page: 117655
  year: 2021
  ident: ref_17
  article-title: Missing data imputation using mixture factor analysis for building electric load data
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117655
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref_22
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 1141
  year: 2016
  ident: ref_3
  article-title: Impact of GPS signal loss and its mitigation in power system synchronized measurement devices
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2580002
– volume: 65
  start-page: 264
  year: 2016
  ident: ref_4
  article-title: Noise suppression of corona current measurement from HVdc transmission lines
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2015.2485339
– volume: 34
  start-page: 5044
  year: 2019
  ident: ref_19
  article-title: A fully data-driven method based on generative adversarial networks for power system dynamic security assessment with missing data
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2922671
– ident: ref_23
  doi: 10.3390/s21227731
– volume: 11
  start-page: 4321
  year: 2020
  ident: ref_13
  article-title: Synchrophasor missing data recovery via data-driven filtering
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.2986439
– volume: 10
  start-page: 3732
  year: 2018
  ident: ref_16
  article-title: Delay aware power system synchrophasor recovery and prediction framework
  publication-title: IEEE Trans. Smart Grid
– volume: 35
  start-page: 2117
  year: 2012
  ident: ref_11
  article-title: Fast and accurate matrix completion via truncated nuclear norm regularization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.271
– volume: 5
  start-page: 22863
  year: 2017
  ident: ref_20
  article-title: Cleaning method for status monitoring data of power equipment based on stacked denoising autoencoders
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2740968
– volume: 52
  start-page: 13902
  year: 2021
  ident: ref_24
  article-title: An accurate GRU-based power time-series prediction approach with selective state updating and stochastic optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3121312
– volume: 30
  start-page: 1121
  year: 2014
  ident: ref_14
  article-title: Methodology for performing synchrophasor data conditioning and validation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2014.2347047
– volume: 132
  start-page: 109903
  year: 2023
  ident: ref_32
  article-title: Anomaly detection of power battery pack using gated recurrent units based variational autoencoder
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2022.109903
– volume: 53
  start-page: 101900
  year: 2020
  ident: ref_28
  article-title: Change-point multivariable quantile regression to explore effect of weather variables on building energy consumption and estimate base temperature range
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101900
SSID ssj0023338
Score 2.4188364
Snippet Supervisory control and data acquisition (SCADA) systems are widely utilized in power equipment for condition monitoring. For the collected data, there...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9697
SubjectTerms Accuracy
asymmetric denoising autoencoder
Case studies
Data entry
data imputation
Data transmission
Deep learning
Missing data
moving average filter
multi-type missing
power equipment monitoring data
Sensors
Teaching methods
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB5BlwMceD8CCzIICS5Rkzgvn1CW3Yo9dNXDHpZTlPqxRGKT3SZF4sYv4MI_5Jcw47ihFYgTxyZua8vjb-azx98AvM5lohI6YdSUrxMLE_iVihNf5zzlXKdoN7ktNpGdnORnZ2Lhrkd3Lq1yg4kWqAe1Z8rbRhCeqlbSjvk0EhjZ8gjJ-LvLK59qSNFZqyuocR32SHgrn8De4ni--DgSMI58bFAX4kj1px1FEyIlvactn2Sl-_8E6C0PtZs9ueWOZnf-70Duwm0XlrJisKN7cE039-HWlljhA_hu7-r6RFzZHKcLH7JjKglh55a1htF1Ep-223THFlR9jR1drWubkMQG7KBfYodVX7ED9J6K4ffmdkuDFbikENrYrKbj-5_ffhTd14sLKvcl2aFu2tr-X7HuW1LeVHr1EE5nR6fvP_iumoMvMSjpfYFAmqhQGx7n6ZIHOlWIHXGAn01mSKI4FDJYJuEyVOhag0roSOkwTlQQGFXxRzBp2kY_AUYyXWmV5lzKMM5EUCXLNDE6NRF6EROFHrzdTGcpndI5Fdz4XCLjoZkvx5n34NXY9HKQ9_hbowOyibEBKXLbB-3qvHQLvJQYy1YZ0k0lkGEuE8GR_RtpZGwQN5Xx4A1ZVEm4gZ2Rlbv-gEMiBa6yyDKBoQKGcx7sbwyndIDSlb_txIOX42uEAjrfqRrdrm0b0tND0uvB48FGxz5jYMZFEnMP8h3r3RnU7pum_mTlxsOhxkL49N_9egY3I1xiNtUn34dJv1rr53BDfunrbvXCLcVfww5IcA
  priority: 102
  providerName: ProQuest
Title Multi-Type Missing Imputation of Time-Series Power Equipment Monitoring Data Based on Moving Average Filter–Asymmetric Denoising Autoencoder
URI https://www.ncbi.nlm.nih.gov/pubmed/38139543
https://www.proquest.com/docview/2904932330
https://www.proquest.com/docview/2905527014
https://pubmed.ncbi.nlm.nih.gov/PMC10747881
https://doaj.org/article/c083a7495d9148b593133fcfc4f031df
Volume 23
WOSCitedRecordID wos001136017400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwoE9IN4bWCqDkOASbRLn5WPKtmIPrSK0h3KKXD-0kdgEmhaJC-IXcOEf8kuYcdKqFUhcuESq47bO-JtXbH8D8CpXiU5ohdHQfp1Y2MCXOk58k_OUc5MibnJXbCKbz_PFQpR7pb5oT1hPD9wL7kxhjCAzDOO1wMh9mQiOWZVVVsUW8agtWV-MerbJ1JBqccy8eh4hjkn9WUdxg0iJ2WnP-ziS_j9N8Z4vOtwnued4pvfg7hAxsqIf6X24YZoHcLzHI_gQfrhjtD7llGyGksRGdkHVGpzYWWsZnfTw6U2Y6VhJhdHY5POmdnuFWK_W9EvsXK4lG6Nj0wy_N3NvG1iBaEerw6Y1raz_-v6z6L5eX1MlLsXOTdPW7v-KzbolUkxtVo_gcjq5fPvOHwot-ArjhbUv0MYlOjSWx3m65IFJNap1HOBnm1liDw6FCpZJuAw1er1AChNpE8aJDgKrJX8MR03bmBNgxKCVyjTnSoVxJgKZLNPEmtRGaOBtFHrwZiv_Sg0k5FQL42OFyQhNVbWbKg9e7rp-6pk3_tZpTJO460Bk2a4BIVQNEKr-BSEPXhMEKlJpHIySw8kEfCQix6qKLBPoxTHS8uB0i5Jq0PWuigRmWRwhF3jwYncbtZSWXmRj2o3rQ1R3mI968KQH1W7MGDNxkcTcg_wAbgcPdXinqa8cE3jYlz8In_4PMTyDOxFqjturk5_C0Xq1Mc_htvqyrrvVCG5mi8xd8xHcGk_m5fuR0zm8zr5NsK28mJUffgM-YDOF
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQceD8MBRYEKherttevPSCUkkaN2kQ95NDbytkHRKJ2Gyeg3vgFXPgd_Cl-CTNrJ00E4tYDx9gbZ-18883MevYbgNe5SnRCbxgN1evEwgZ-oePENzlPOTcp4iZ3zSay4TA_PhZHG_BzsReGyioXnOiIWleK1sh3IoGxLI8w_X5_euZT1yh6u7poodHA4sCcf8WUrX7X7-L_-yaKenujD_t-21XAV-gcZ75Ag050aCyP83TMA5NqxHAc4GebWZLKDYUKxkk4DjVSfFAIE2kTxokOAqsLjpe9AleRxjOqIMuOL_I7juleI17EuQh2agpWREpyUisuz3UG-JP_VxzgenHmirfr3f7PntMduNWG1azT2MFd2DDlPbi5IrZ4H767vcY-Jd5sgHDDg6xPLS0cNlllGW2H8Wm50NTsiLrHsb2z-cQVVLGG--hKrFvMCraL3l8z_N7ALcmwDlICUjPrTaj84Ne3H536_OSE2pUp1jVlNXG_15nPKlIO1Wb6AEaX8TwewmZZleYxMJIZS4s050qFcSaCIhmniTWpjdAL2ij04O0CL1K1Su3UMOSzxIyNoCWX0PLg1XLoaSNP8rdBuwS65QBSFHcHqulH2RKUVBiLFxmmy1pghjxOBA85t8qq2CLva-vBNkFWEu_hZFTRbt_AWyIFMdnJMoGhDoajHmwtkClbQqzlBSw9eLk8jVRG76eK0lRzN4b0ADFp9-BRYwTLOWNgyUUScw_yNfNYu6n1M-Xkk5NLD5seEeGTf8_rBVzfHw0O5WF_ePAUbkRoz65sKd-Czdl0bp7BNfVlNqmnz53VM5CXbD2_Aa8ql1I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAceD8MBRYEKhcrttevPSCUkkZEpVEOPeS2cvYBkajdxgmoN34BF34Nf4dfwszaSROBuPXAMfbGWTvffDOznv0G4GWuEp3QG0ZD9TqxsIFf6DjxTc5Tzk2KuMlds4lsOMzHYzHagp_LvTBUVrnkREfUulK0Rt6JBMayPML0u2PbsohRr__25NSnDlL0pnXZTqOByIE5-4rpW_1m0MP_-lUU9feP3r332w4DvkJHOfcFGneiQ2N5nKcTHphUI57jAD_bzJJsbihUMEnCSaiR7oNCmEibME50EFhdcLzsJbiccZ5R14hsfJ7rcUz9GiEjzkXQqSlwESlJS625P9cl4E9fsOYMNws11zxf_-Z__MxuwY023Gbdxj5uw5Yp78D1NRHGu_Dd7UH2KSFnhwhDPMgG1OrCYZZVltE2GZ-WEU3NRtRVju2fLqau0Io1nEhXYr1iXrA9jAo0w-8duqUa1kWqQMpm_SmVJfz69qNbnx0fUxszxXqmrKbu97qLeUWKotrM7sHRRTyP-7BdVqV5CIzkx9IizblSYZyJoEgmaWJNaiP0jjYKPXi9xI5UrYI7NRL5LDGTI5jJFcw8eLEaetLIlvxt0B4BcDWAlMbdgWr2UbbEJRXG6EWGabQWmDlPEsFDzq2yKrboD7T1YJfgK4kPcTKqaLd14C2RspjsZpnAEAjDVA92liiVLVHW8hyiHjxfnUaKo_dWRWmqhRtDOoGYzHvwoDGI1Zwx4OQiibkH-YapbNzU5ply-snJqIdN74jw0b_n9QyuotHID4PhwWO4FqFpu2qmfAe257OFeQJX1Jf5tJ49dQTAQF6w8fwGEsigBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Type+Missing+Imputation+of+Time-Series+Power+Equipment+Monitoring+Data+Based+on+Moving+Average+Filter%E2%80%93Asymmetric+Denoising+Autoencoder&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Ling&rft.au=Gu%2C+Juping&rft.au=Zhang%2C+Xinsong&rft.au=Hua%2C+Liang&rft.date=2023-12-08&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=24&rft.spage=9697&rft_id=info:doi/10.3390%2Fs23249697&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s23249697
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon