Model and Method for Providing Resilience to Resource-Constrained AI-System
Artificial intelligence technologies are becoming increasingly prevalent in resource-constrained, safety-critical embedded systems. Numerous methods exist to enhance the resilience of AI systems against disruptive influences. However, when resources are limited, ensuring cost-effective resilience be...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 24; číslo 18; s. 5951 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
13.09.2024
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Artificial intelligence technologies are becoming increasingly prevalent in resource-constrained, safety-critical embedded systems. Numerous methods exist to enhance the resilience of AI systems against disruptive influences. However, when resources are limited, ensuring cost-effective resilience becomes crucial. A promising approach for reducing the resource consumption of AI systems during test-time involves applying the concepts and methods of dynamic neural networks. Nevertheless, the resilience of dynamic neural networks against various disturbances remains underexplored. This paper proposes a model architecture and training method that integrate dynamic neural networks with a focus on resilience. Compared to conventional training methods, the proposed approach yields a 24% increase in the resilience of convolutional networks and a 19.7% increase in the resilience of visual transformers under fault injections. Additionally, it results in a 16.9% increase in the resilience of convolutional network ResNet-110 and a 21.6% increase in the resilience of visual transformer DeiT-S under adversarial attacks, while saving more than 30% of computational resources. Meta-training the neural network model improves resilience to task changes by an average of 22%, while achieving the same level of resource savings. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1424-8220 1424-8220 |
| DOI: | 10.3390/s24185951 |