The Strong Second-Order Sufficient Condition and Constraint Nondegeneracy in Nonlinear Semidefinite Programming and Their Implications
For a locally optimal solution to the nonlinear semidefinite programming problem, under Robinson's constraint qualification, the following conditions are proved to be equivalent: the strong second-order sufficient condition and constraint nondegeneracy; the nonsingularity of Clarke's Jacob...
Uloženo v:
| Vydáno v: | Mathematics of operations research Ročník 31; číslo 4; s. 761 - 776 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Linthicum
INFORMS
01.11.2006
Institute for Operations Research and the Management Sciences |
| Témata: | |
| ISSN: | 0364-765X, 1526-5471 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For a locally optimal solution to the nonlinear semidefinite programming problem, under Robinson's constraint qualification, the following conditions are proved to be equivalent: the strong second-order sufficient condition and constraint nondegeneracy; the nonsingularity of Clarke's Jacobian of the Karush-Kuhn-Tucker system; the strong regularity of the Karush-Kuhn-Tucker point; and others. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0364-765X 1526-5471 |
| DOI: | 10.1287/moor.1060.0195 |