Gate-Level Circuit Partitioning Algorithm Based on Clustering and an Improved Genetic Algorithm

Gate-level circuit partitioning is an important development trend for improving the efficiency of simulation in EDA software. In this paper, a gate-level circuit partitioning algorithm, based on clustering and an improved genetic algorithm, is proposed for the gate-level simulation task. First, a cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Jg. 25; H. 4; S. 597
Hauptverfasser: Cheng, Rui, Yin, Lin-Zi, Jiang, Zhao-Hui, Xu, Xue-Mei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 31.03.2023
MDPI
Schlagworte:
ISSN:1099-4300, 1099-4300
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gate-level circuit partitioning is an important development trend for improving the efficiency of simulation in EDA software. In this paper, a gate-level circuit partitioning algorithm, based on clustering and an improved genetic algorithm, is proposed for the gate-level simulation task. First, a clustering algorithm based on betweenness centrality is proposed to quickly identify clusters in the original circuit and achieve the circuit coarse. Next, a constraint-based genetic algorithm is proposed which provides absolute and probabilistic genetic strategies for clustered circuits and other circuits, respectively. This new genetic strategy guarantees the integrity of clusters and is effective for realizing the fine partitioning of gate-level circuits. The experimental results using 12 ISCAS ‘89 and ISCAS ‘85 benchmark circuits show that the proposed algorithm is 5% better than Metis, 80% better than KL, and 61% better than traditional genetic algorithms for finding the minimum number of connections between subsets.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e25040597