A novel fuzzy c-regression model algorithm using a new error measure and particle swarm optimization

This paper presents a new algorithm for fuzzy c-regression model clustering. The proposed methodology is based on adding a second regularization term in the objective function of a Fuzzy C-Regression Model (FCRM) clustering algorithm in order to take into account noisy data. In addition, a new error...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Applied Mathematics and Computer Science Jg. 22; H. 3; S. 617 - 628
Hauptverfasser: Soltani, Moêz, Chaari, Abdelkader, Ben Hmida, Fayçal
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Zielona Góra Versita 01.09.2012
Sciendo
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Schlagworte:
ISSN:1641-876X, 2083-8492, 2083-8492
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new algorithm for fuzzy c-regression model clustering. The proposed methodology is based on adding a second regularization term in the objective function of a Fuzzy C-Regression Model (FCRM) clustering algorithm in order to take into account noisy data. In addition, a new error measure is used in the objective function of the FCRM algorithm, replacing the one used in this type of algorithm. Then, particle swarm optimization is employed to finally tune parameters of the obtained fuzzy model. The orthogonal least squares method is used to identify the unknown parameters of the local linear model. Finally, validation results of two examples are given to demonstrate the effectiveness and practicality of the proposed algorithm.
Bibliographie:v10006-012-0047-0.pdf
ark:/67375/QT4-5KBD304V-T
ArticleID:v10006-012-0047-0
istex:EA9B9E180505568D503E7662EC48E5BBD1F18F2B
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1641-876X
2083-8492
2083-8492
DOI:10.2478/v10006-012-0047-0