A novel fuzzy c-regression model algorithm using a new error measure and particle swarm optimization
This paper presents a new algorithm for fuzzy c-regression model clustering. The proposed methodology is based on adding a second regularization term in the objective function of a Fuzzy C-Regression Model (FCRM) clustering algorithm in order to take into account noisy data. In addition, a new error...
Uložené v:
| Vydané v: | International Journal of Applied Mathematics and Computer Science Ročník 22; číslo 3; s. 617 - 628 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Zielona Góra
Versita
01.09.2012
Sciendo De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| Predmet: | |
| ISSN: | 1641-876X, 2083-8492, 2083-8492 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper presents a new algorithm for fuzzy c-regression model clustering. The proposed methodology is based on adding a second regularization term in the objective function of a Fuzzy C-Regression Model (FCRM) clustering algorithm in order to take into account noisy data. In addition, a new error measure is used in the objective function of the FCRM algorithm, replacing the one used in this type of algorithm. Then, particle swarm optimization is employed to finally tune parameters of the obtained fuzzy model. The orthogonal least squares method is used to identify the unknown parameters of the local linear model. Finally, validation results of two examples are given to demonstrate the effectiveness and practicality of the proposed algorithm. |
|---|---|
| Bibliografia: | v10006-012-0047-0.pdf ark:/67375/QT4-5KBD304V-T ArticleID:v10006-012-0047-0 istex:EA9B9E180505568D503E7662EC48E5BBD1F18F2B ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1641-876X 2083-8492 2083-8492 |
| DOI: | 10.2478/v10006-012-0047-0 |