Evolutionary plasticity of segmentation clock networks

The vertebral column is a conserved anatomical structure that defines the vertebrate phylum. The periodic or segmental pattern of the vertebral column is established early in development when the vertebral precursors, the somites, are rhythmically produced from presomitic mesoderm (PSM). This rhythm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Development (Cambridge) Ročník 138; číslo 13; s. 2783
Hlavní autoři: Krol, Aurélie J, Roellig, Daniela, Dequéant, Mary-Lee, Tassy, Olivier, Glynn, Earl, Hattem, Gaye, Mushegian, Arcady, Oates, Andrew C, Pourquié, Olivier
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 01.07.2011
Témata:
ISSN:1477-9129, 1477-9129
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The vertebral column is a conserved anatomical structure that defines the vertebrate phylum. The periodic or segmental pattern of the vertebral column is established early in development when the vertebral precursors, the somites, are rhythmically produced from presomitic mesoderm (PSM). This rhythmic activity is controlled by a segmentation clock that is associated with the periodic transcription of cyclic genes in the PSM. Comparison of the mouse, chicken and zebrafish PSM oscillatory transcriptomes revealed networks of 40 to 100 cyclic genes mostly involved in Notch, Wnt and FGF signaling pathways. However, despite this conserved signaling oscillation, the identity of individual cyclic genes mostly differed between the three species, indicating a surprising evolutionary plasticity of the segmentation networks.
AbstractList The vertebral column is a conserved anatomical structure that defines the vertebrate phylum. The periodic or segmental pattern of the vertebral column is established early in development when the vertebral precursors, the somites, are rhythmically produced from presomitic mesoderm (PSM). This rhythmic activity is controlled by a segmentation clock that is associated with the periodic transcription of cyclic genes in the PSM. Comparison of the mouse, chicken and zebrafish PSM oscillatory transcriptomes revealed networks of 40 to 100 cyclic genes mostly involved in Notch, Wnt and FGF signaling pathways. However, despite this conserved signaling oscillation, the identity of individual cyclic genes mostly differed between the three species, indicating a surprising evolutionary plasticity of the segmentation networks.
The vertebral column is a conserved anatomical structure that defines the vertebrate phylum. The periodic or segmental pattern of the vertebral column is established early in development when the vertebral precursors, the somites, are rhythmically produced from presomitic mesoderm (PSM). This rhythmic activity is controlled by a segmentation clock that is associated with the periodic transcription of cyclic genes in the PSM. Comparison of the mouse, chicken and zebrafish PSM oscillatory transcriptomes revealed networks of 40 to 100 cyclic genes mostly involved in Notch, Wnt and FGF signaling pathways. However, despite this conserved signaling oscillation, the identity of individual cyclic genes mostly differed between the three species, indicating a surprising evolutionary plasticity of the segmentation networks.The vertebral column is a conserved anatomical structure that defines the vertebrate phylum. The periodic or segmental pattern of the vertebral column is established early in development when the vertebral precursors, the somites, are rhythmically produced from presomitic mesoderm (PSM). This rhythmic activity is controlled by a segmentation clock that is associated with the periodic transcription of cyclic genes in the PSM. Comparison of the mouse, chicken and zebrafish PSM oscillatory transcriptomes revealed networks of 40 to 100 cyclic genes mostly involved in Notch, Wnt and FGF signaling pathways. However, despite this conserved signaling oscillation, the identity of individual cyclic genes mostly differed between the three species, indicating a surprising evolutionary plasticity of the segmentation networks.
Author Pourquié, Olivier
Dequéant, Mary-Lee
Hattem, Gaye
Mushegian, Arcady
Tassy, Olivier
Oates, Andrew C
Glynn, Earl
Krol, Aurélie J
Roellig, Daniela
Author_xml – sequence: 1
  givenname: Aurélie J
  surname: Krol
  fullname: Krol, Aurélie J
  organization: Stowers Institute for Medical Research, Kansas City, MO 64110, USA
– sequence: 2
  givenname: Daniela
  surname: Roellig
  fullname: Roellig, Daniela
– sequence: 3
  givenname: Mary-Lee
  surname: Dequéant
  fullname: Dequéant, Mary-Lee
– sequence: 4
  givenname: Olivier
  surname: Tassy
  fullname: Tassy, Olivier
– sequence: 5
  givenname: Earl
  surname: Glynn
  fullname: Glynn, Earl
– sequence: 6
  givenname: Gaye
  surname: Hattem
  fullname: Hattem, Gaye
– sequence: 7
  givenname: Arcady
  surname: Mushegian
  fullname: Mushegian, Arcady
– sequence: 8
  givenname: Andrew C
  surname: Oates
  fullname: Oates, Andrew C
– sequence: 9
  givenname: Olivier
  surname: Pourquié
  fullname: Pourquié, Olivier
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21652651$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tPwzAQhC1URB9w4Qeg3Dil2I4f9RFVLSBV4gLnyHY2KNSxQ-wU9d-TiiKhPezOzqeRZo4mPnhA6JbgJaGMPlRwWGJRrAp2gWaESZkrQtXk3z1F8xg_McaFkPIKTSkRnApOZkhsDsENqQle98esczqmxjbpmIU6i_DRgk_65GbWBbvPPKTv0O_jNbqstYtwc94L9L7dvK2f893r08v6cZdbjlXKmVVGs6qqBLGFVjAKxYFbI4GDEpQbVhEzfiQzWtRKcWJrbCkeRxjM6ALd_-Z2ffgaIKaybaIF57SHMMRyJUmxopScyLszOZgWqrLrm3asVP5VpT9NFFdd
CitedBy_id crossref_primary_10_1016_j_ydbio_2019_03_008
crossref_primary_10_1016_j_devcel_2024_11_003
crossref_primary_10_1016_j_ydbio_2017_05_010
crossref_primary_10_1002_dvdy_131
crossref_primary_10_1073_pnas_1201505109
crossref_primary_10_1016_j_tig_2012_11_008
crossref_primary_10_1242_bio_025148
crossref_primary_10_1242_dev_202191
crossref_primary_10_1016_j_devcel_2012_09_009
crossref_primary_10_1016_j_semcdb_2025_103630
crossref_primary_10_1242_dev_115535
crossref_primary_10_12688_f1000research_12369_1
crossref_primary_10_1371_journal_pcbi_1003843
crossref_primary_10_1242_dev_085126
crossref_primary_10_1242_dev_063735
crossref_primary_10_1111_j_1525_142X_2011_00528_x
crossref_primary_10_7554_eLife_106316
crossref_primary_10_1186_1741_7007_11_112
crossref_primary_10_1111_febs_16899
crossref_primary_10_3389_fcell_2016_00151
crossref_primary_10_3389_fcell_2022_944016
crossref_primary_10_1016_j_asd_2016_11_007
crossref_primary_10_1242_dev_143974
crossref_primary_10_1242_dev_069310
crossref_primary_10_1371_journal_pbio_1001364
crossref_primary_10_7554_eLife_33843
crossref_primary_10_1093_nar_gkt807
crossref_primary_10_1016_j_gde_2019_05_006
crossref_primary_10_1093_iob_obae021
crossref_primary_10_7554_eLife_79575
crossref_primary_10_1186_2041_9139_4_35
crossref_primary_10_1016_j_mod_2012_01_006
crossref_primary_10_1371_journal_pcbi_1002586
crossref_primary_10_1007_s10539_019_9716_9
crossref_primary_10_1038_nrm3891
crossref_primary_10_1242_dev_093278
crossref_primary_10_1242_dev_203054
crossref_primary_10_1002_wdev_305
crossref_primary_10_1038_s41598_018_22619_9
crossref_primary_10_1002_bies_201900133
crossref_primary_10_1111_dgd_12655
crossref_primary_10_1242_dev_102111
crossref_primary_10_1016_j_devcel_2017_02_001
crossref_primary_10_1016_j_ydbio_2024_11_002
crossref_primary_10_1016_j_bbrc_2012_06_077
crossref_primary_10_1371_journal_pcbi_1006579
crossref_primary_10_1242_dev_077230
crossref_primary_10_1016_j_semcdb_2016_01_041
crossref_primary_10_1038_nbt_2967
crossref_primary_10_1016_j_gde_2012_09_001
crossref_primary_10_1016_j_cdev_2021_203737
crossref_primary_10_1016_j_cell_2018_01_026
crossref_primary_10_1016_j_ydbio_2011_11_021
crossref_primary_10_1016_j_gde_2020_04_008
crossref_primary_10_1242_dev_199430
crossref_primary_10_1007_s00018_020_03655_z
crossref_primary_10_1016_j_semcdb_2014_06_015
crossref_primary_10_1038_s41576_025_00813_6
crossref_primary_10_1242_dev_073544
crossref_primary_10_1016_j_ydbio_2022_02_007
crossref_primary_10_1126_science_1218256
crossref_primary_10_1016_j_devcel_2013_01_024
crossref_primary_10_1016_j_bpj_2017_08_036
crossref_primary_10_1242_dev_161091
crossref_primary_10_1016_j_ydbio_2022_02_011
crossref_primary_10_3389_fcell_2023_1327227
crossref_primary_10_1038_s41580_024_00709_z
crossref_primary_10_1002_wrna_1751
crossref_primary_10_1186_s41065_017_0029_1
crossref_primary_10_1016_j_coisb_2018_06_001
crossref_primary_10_1016_j_gde_2013_02_005
crossref_primary_10_1073_pnas_1308811110
crossref_primary_10_1089_dna_2023_0226
crossref_primary_10_1111_dgd_12710
crossref_primary_10_1242_dev_161257
crossref_primary_10_1242_dev_170480
crossref_primary_10_7554_eLife_55608
crossref_primary_10_7554_eLife_106316_2
crossref_primary_10_1038_ng_3591
crossref_primary_10_1371_journal_pone_0108266
crossref_primary_10_1016_j_devcel_2017_01_015
crossref_primary_10_2108_zs150181
crossref_primary_10_1016_j_ydbio_2019_06_024
crossref_primary_10_1371_journal_pone_0155802
crossref_primary_10_1086_714959
crossref_primary_10_1371_journal_pgen_1009812
crossref_primary_10_7554_eLife_08438
crossref_primary_10_1016_j_semcdb_2022_12_009
crossref_primary_10_1146_annurev_cellbio_101011_155703
crossref_primary_10_1136_jmedgenet_2019_106333
crossref_primary_10_7554_eLife_05842
crossref_primary_10_1038_s41586_022_05527_x
crossref_primary_10_1088_1478_3975_13_3_036009
crossref_primary_10_1016_j_jtbi_2019_05_006
crossref_primary_10_1016_j_semcdb_2016_01_010
crossref_primary_10_1016_j_reprotox_2014_10_008
crossref_primary_10_1016_j_semcdb_2020_04_014
crossref_primary_10_1534_genetics_114_163642
crossref_primary_10_1016_j_ydbio_2012_08_027
crossref_primary_10_1016_j_pbiomolbio_2018_04_004
crossref_primary_10_1016_j_semcdb_2016_02_006
crossref_primary_10_1038_ncomms11861
crossref_primary_10_1007_s10539_020_09762_2
crossref_primary_10_7554_eLife_55778
crossref_primary_10_1016_j_semcdb_2022_03_030
crossref_primary_10_1073_pnas_1810430115
crossref_primary_10_1155_2014_718683
crossref_primary_10_1111_dgd_12249
crossref_primary_10_1186_s12859_023_05284_2
crossref_primary_10_1016_j_coisb_2024_100520
crossref_primary_10_1016_j_devcel_2023_07_003
crossref_primary_10_1016_j_physrep_2024_05_002
crossref_primary_10_1242_bio_060139
crossref_primary_10_3389_fcell_2021_753446
crossref_primary_10_1016_j_ydbio_2012_07_002
crossref_primary_10_1111_j_1525_142X_2012_00543_x
crossref_primary_10_1111_dgd_12366
crossref_primary_10_3389_fcell_2022_944673
crossref_primary_10_1242_dev_146902
crossref_primary_10_3390_jdb9010005
crossref_primary_10_1016_j_semcdb_2015_11_014
crossref_primary_10_1111_dgd_12242
crossref_primary_10_1038_s41586_022_05574_4
crossref_primary_10_1242_bio_20122386
crossref_primary_10_4161_15384101_2014_972868
crossref_primary_10_1038_s41586_020_2428_0
crossref_primary_10_1016_j_gde_2012_10_003
crossref_primary_10_1016_j_ydbio_2015_03_016
crossref_primary_10_3389_fgene_2015_00029
crossref_primary_10_1242_dev_133173
crossref_primary_10_1042_BCJ20210043
crossref_primary_10_1186_1471_213X_13_42
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1242/dev.063834
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Zoology
Biology
EISSN 1477-9129
ExternalDocumentID 21652651
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Howard Hughes Medical Institute
– fundername: NICHD NIH HHS
  grantid: R02 HD043158
– fundername: NICHD NIH HHS
  grantid: R01 HD043158
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0R~
186
18M
2WC
34G
39C
3O-
4.4
53G
5GY
5RE
5VS
85S
9M8
AAFWJ
ABJNI
ABTAH
ABZEH
ACGFS
ACPRK
ACREN
ADBBV
ADFRT
ADVGF
AENEX
AFFNX
AGCDD
AGGIJ
AI.
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
F9R
GX1
H13
HZ~
H~9
INIJC
KQ8
MVM
NPM
O9-
OHT
OK1
P2P
R.V
RCB
RHF
RHI
SJN
TR2
TWZ
UPT
UQL
VH1
VXZ
W8F
WH7
WOQ
X7M
XJT
XOL
XSW
ZCG
ZGI
ZXP
ZY4
7X8
ADXHL
AETEA
ID FETCH-LOGICAL-c509t-4c9ba4ddd61c3a9eba495e5cb7e5e9625b4d1b5e574ba6f9951cf0c202026b042
IEDL.DBID 7X8
ISICitedReferencesCount 152
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000291348700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1477-9129
IngestDate Fri Sep 05 10:14:21 EDT 2025
Wed Feb 19 01:48:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-4c9ba4ddd61c3a9eba495e5cb7e5e9625b4d1b5e574ba6f9951cf0c202026b042
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://journals.biologists.com/dev/article-pdf/138/13/2783/1193944/2783.pdf
PMID 21652651
PQID 871382214
PQPubID 23479
ParticipantIDs proquest_miscellaneous_871382214
pubmed_primary_21652651
PublicationCentury 2000
PublicationDate 2011-Jul
20110701
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-Jul
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Development (Cambridge)
PublicationTitleAlternate Development
PublicationYear 2011
References 17274976 - Dev Biol. 2007 Apr 15;304(2):615-32
18983265 - Biol Cell. 2009 May;101(5):301-8
12702657 - Development. 2003 Jun;130(11):2429-41
18287203 - Development. 2008 Apr;135(7):1283-93
17693683 - Mol Cell Proteomics. 2007 Nov;6(11):1952-67
14526104 - Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12195-200
8900190 - J Biol Chem. 1996 Oct 25;271(43):27018-24
19366806 - Cancer Res. 2009 May 1;69(9):3736-45
16303799 - Bioinformatics. 2006 Feb 1;22(3):310-6
17095659 - Science. 2006 Dec 8;314(5805):1595-8
20160088 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4224-9
19033362 - Nucleic Acids Res. 2009 Jan;37(Database issue):D690-7
8306883 - Development. 1993 Dec;119(4):1203-15
15261833 - Gene Expr Patterns. 2004 Sep;4(5):553-9
12783854 - Genes Dev. 2003 Jun 15;17(12):1451-6
1304821 - Dev Dyn. 1992 Dec;195(4):231-72
9693141 - Development. 1998 Sep;125(17):3379-88
10704388 - Development. 2000 Apr;127(7):1421-9
8626452 - J Biol Chem. 1996 Mar 15;271(11):6497-501
20829477 - Science. 2010 Sep 10;329(5997):1306-11
19882724 - Dev Dyn. 2009 Dec;238(12):3043-55
10802651 - Nat Genet. 2000 May;25(1):25-9
9393857 - Cell. 1997 Nov 28;91(5):639-48
18158299 - Nucleic Acids Res. 2008 Jan;36(Database issue):D724-8
12117818 - Development. 2002 Aug;129(15):3693-704
16956752 - Biochim Biophys Acta. 2006 Sep;1762(9):828-34
11100729 - Nature. 2000 Nov 23;408(6811):475-9
17006448 - Nature. 2006 Oct 5;443(7111):594-7
19880382 - Nucleic Acids Res. 2010 Jan;38(Database issue):D355-60
18488021 - Nat Cell Biol. 2008 Jun;10(6):643-53
17167519 - Heredity (Edinb). 2008 Feb;100(2):132-40
18055500 - Nucleic Acids Res. 2008 Jan;36(Database issue):D263-6
18981482 - Genes Dev. 2008 Nov 1;22(21):3064-75
16381936 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D581-5
18073188 - Nucleic Acids Res. 2008 Jan;36(Database issue):D88-92
11493538 - Development. 2001 Jun;128(12):2175-86
19014500 - BMC Mol Biol. 2008;9:102
12050140 - Development. 2002 Jun;129(12):2929-46
10887161 - Genes Dev. 2000 Jul 1;14(13):1678-90
12702209 - Genome Biol. 2003;4(4):R28
19378104 - Methods Mol Biol. 2009;546:153-72
12932323 - Curr Biol. 2003 Aug 19;13(16):1398-408
10049564 - Dev Biol. 1999 Mar 1;207(1):49-61
18414404 - Nat Rev Genet. 2008 May;9(5):370-82
18487207 - J Biol Chem. 2008 Jul 11;283(28):19201-10
15249128 - Mol Cell Endocrinol. 2004 Jul 30;222(1-2):83-91
19272372 - Dev Biol. 2009 Jun 1;330(1):21-31
17148475 - Nucleic Acids Res. 2007 Jan;35(Database issue):D26-31
12558606 - Differentiation. 2003 Jan;71(1):83-9
15231748 - Genome Res. 2004 Jul;14(7):1324-32
15309634 - Dev Genes Evol. 2004 Aug;214(8):393-406
19164561 - Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2230-5
11076679 - Dev Biol. 2000 Nov 1;227(1):91-103
18927236 - Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16614-9
18308339 - J Theor Biol. 2008 Jun 7;252(3):574-85
16516838 - Dev Cell. 2006 Mar;10(3):355-66
17761159 - Dev Biol. 2007 Oct 1;310(1):113-28
9790495 - Cell Growth Differ. 1998 Oct;9(10):837-45
17492136 - Acta Biochim Biophys Sin (Shanghai). 2007 May;39(5):384-90
11682119 - Behav Brain Res. 2001 Nov 1;125(1-2):279-84
18455712 - Dev Biol. 2008 Jul 1;319(1):160-9
15772132 - Development. 2005 Apr;132(8):1763-72
9742402 - Curr Biol. 1998 Aug 27;8(17):979-82
16469913 - Science. 2006 Feb 10;311(5762):796-800
17481602 - Dev Biol. 2007 Jun 15;306(2):480-92
7596411 - Nature. 1995 Jun 29;375(6534):787-90
References_xml – reference: 19880382 - Nucleic Acids Res. 2010 Jan;38(Database issue):D355-60
– reference: 12558606 - Differentiation. 2003 Jan;71(1):83-9
– reference: 19366806 - Cancer Res. 2009 May 1;69(9):3736-45
– reference: 16381936 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D581-5
– reference: 17693683 - Mol Cell Proteomics. 2007 Nov;6(11):1952-67
– reference: 18158299 - Nucleic Acids Res. 2008 Jan;36(Database issue):D724-8
– reference: 18487207 - J Biol Chem. 2008 Jul 11;283(28):19201-10
– reference: 20160088 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4224-9
– reference: 18983265 - Biol Cell. 2009 May;101(5):301-8
– reference: 11682119 - Behav Brain Res. 2001 Nov 1;125(1-2):279-84
– reference: 17274976 - Dev Biol. 2007 Apr 15;304(2):615-32
– reference: 9693141 - Development. 1998 Sep;125(17):3379-88
– reference: 18308339 - J Theor Biol. 2008 Jun 7;252(3):574-85
– reference: 20829477 - Science. 2010 Sep 10;329(5997):1306-11
– reference: 8306883 - Development. 1993 Dec;119(4):1203-15
– reference: 17095659 - Science. 2006 Dec 8;314(5805):1595-8
– reference: 17148475 - Nucleic Acids Res. 2007 Jan;35(Database issue):D26-31
– reference: 19164561 - Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2230-5
– reference: 15261833 - Gene Expr Patterns. 2004 Sep;4(5):553-9
– reference: 18055500 - Nucleic Acids Res. 2008 Jan;36(Database issue):D263-6
– reference: 19033362 - Nucleic Acids Res. 2009 Jan;37(Database issue):D690-7
– reference: 19882724 - Dev Dyn. 2009 Dec;238(12):3043-55
– reference: 11100729 - Nature. 2000 Nov 23;408(6811):475-9
– reference: 17167519 - Heredity (Edinb). 2008 Feb;100(2):132-40
– reference: 10802651 - Nat Genet. 2000 May;25(1):25-9
– reference: 18455712 - Dev Biol. 2008 Jul 1;319(1):160-9
– reference: 12932323 - Curr Biol. 2003 Aug 19;13(16):1398-408
– reference: 9790495 - Cell Growth Differ. 1998 Oct;9(10):837-45
– reference: 16469913 - Science. 2006 Feb 10;311(5762):796-800
– reference: 18488021 - Nat Cell Biol. 2008 Jun;10(6):643-53
– reference: 19272372 - Dev Biol. 2009 Jun 1;330(1):21-31
– reference: 10704388 - Development. 2000 Apr;127(7):1421-9
– reference: 15309634 - Dev Genes Evol. 2004 Aug;214(8):393-406
– reference: 18981482 - Genes Dev. 2008 Nov 1;22(21):3064-75
– reference: 12050140 - Development. 2002 Jun;129(12):2929-46
– reference: 15772132 - Development. 2005 Apr;132(8):1763-72
– reference: 16303799 - Bioinformatics. 2006 Feb 1;22(3):310-6
– reference: 15249128 - Mol Cell Endocrinol. 2004 Jul 30;222(1-2):83-91
– reference: 18287203 - Development. 2008 Apr;135(7):1283-93
– reference: 10887161 - Genes Dev. 2000 Jul 1;14(13):1678-90
– reference: 14526104 - Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12195-200
– reference: 15231748 - Genome Res. 2004 Jul;14(7):1324-32
– reference: 12117818 - Development. 2002 Aug;129(15):3693-704
– reference: 17006448 - Nature. 2006 Oct 5;443(7111):594-7
– reference: 12702209 - Genome Biol. 2003;4(4):R28
– reference: 19014500 - BMC Mol Biol. 2008;9:102
– reference: 12702657 - Development. 2003 Jun;130(11):2429-41
– reference: 18073188 - Nucleic Acids Res. 2008 Jan;36(Database issue):D88-92
– reference: 9742402 - Curr Biol. 1998 Aug 27;8(17):979-82
– reference: 17481602 - Dev Biol. 2007 Jun 15;306(2):480-92
– reference: 11076679 - Dev Biol. 2000 Nov 1;227(1):91-103
– reference: 8626452 - J Biol Chem. 1996 Mar 15;271(11):6497-501
– reference: 7596411 - Nature. 1995 Jun 29;375(6534):787-90
– reference: 10049564 - Dev Biol. 1999 Mar 1;207(1):49-61
– reference: 16956752 - Biochim Biophys Acta. 2006 Sep;1762(9):828-34
– reference: 12783854 - Genes Dev. 2003 Jun 15;17(12):1451-6
– reference: 1304821 - Dev Dyn. 1992 Dec;195(4):231-72
– reference: 17761159 - Dev Biol. 2007 Oct 1;310(1):113-28
– reference: 16516838 - Dev Cell. 2006 Mar;10(3):355-66
– reference: 17492136 - Acta Biochim Biophys Sin (Shanghai). 2007 May;39(5):384-90
– reference: 18927236 - Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16614-9
– reference: 9393857 - Cell. 1997 Nov 28;91(5):639-48
– reference: 8900190 - J Biol Chem. 1996 Oct 25;271(43):27018-24
– reference: 19378104 - Methods Mol Biol. 2009;546:153-72
– reference: 18414404 - Nat Rev Genet. 2008 May;9(5):370-82
– reference: 11493538 - Development. 2001 Jun;128(12):2175-86
SSID ssj0003677
Score 2.4461308
Snippet The vertebral column is a conserved anatomical structure that defines the vertebrate phylum. The periodic or segmental pattern of the vertebral column is...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2783
SubjectTerms Animals
Biological Clocks - genetics
Biological Clocks - physiology
Chickens
Evolution, Molecular
Fibroblast Growth Factors - genetics
Fibroblast Growth Factors - metabolism
In Situ Hybridization
Mice
Oligonucleotide Array Sequence Analysis
Polymerase Chain Reaction
Receptors, Notch - genetics
Receptors, Notch - metabolism
Signal Transduction - genetics
Signal Transduction - physiology
Wnt Proteins - genetics
Wnt Proteins - metabolism
Zebrafish
Title Evolutionary plasticity of segmentation clock networks
URI https://www.ncbi.nlm.nih.gov/pubmed/21652651
https://www.proquest.com/docview/871382214
Volume 138
WOSCitedRecordID wos000291348700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7UqnjxUV_1RQ5eY7vJbrJ7EpEWLy09KBQvIfsSEZPa1EL_vbPJVk_iwUtgBwJhMrvftzuz8wFcM8G1EsSGNhYmpIr1Qs64CAWNOZVEcZnaWmwiHY34ZCLGvjan8mWVqzWxXqh1qdwZeReJfYxgRujt9CN0olEuueoVNNahFSOTcUGdTn6ahcdJLbxIqMtSIq757qQISl1tFjcOrJ1e8m_MskaYwd4_v20fdj21DO6aWDiANVO0YasRm1y2YXvo0-hofC5r4yEk_YWPvXy2DKZIpV2V9XwZlDaozMu7v5lUBApB7y0omqLx6gieBv3H-4fQSymE6H0xx58gZE611glRcS4MDgQzTMnUMCNwDySpJhItKZV5YgXyLmV7KkIyGSUSJ_YxbBRlYU4hiJM84UIzkZselUxxQy2yEJvGTEbE5h0IVk7KMFRd_iEvTPlZZd9u6sBJ4-hs2rTUyCKSuD795Ozvl89hpznXdSWzF9CyOE3NJWyqxfy1ml3VIYDP0Xj4BZWNu5U
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+plasticity+of+segmentation+clock+networks&rft.jtitle=Development+%28Cambridge%29&rft.au=Krol%2C+Aur%C3%A9lie+J&rft.au=Roellig%2C+Daniela&rft.au=Dequ%C3%A9ant%2C+Mary-Lee&rft.au=Tassy%2C+Olivier&rft.date=2011-07-01&rft.issn=1477-9129&rft.eissn=1477-9129&rft.volume=138&rft.issue=13&rft.spage=2783&rft_id=info:doi/10.1242%2Fdev.063834&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9129&client=summon