Stochastic Primal–Dual Hybrid Gradient Algorithm with Adaptive Step Sizes

In this work, we propose a new primal–dual algorithm with adaptive step sizes. The stochastic primal–dual hybrid gradient (SPDHG) algorithm with constant step sizes has become widely applied in large-scale convex optimization across many scientific fields due to its scalability. While the product of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical imaging and vision Jg. 66; H. 3; S. 294 - 313
Hauptverfasser: Chambolle, Antonin, Delplancke, Claire, Ehrhardt, Matthias J., Schönlieb, Carola-Bibiane, Tang, Junqi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2024
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:0924-9907, 1573-7683
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we propose a new primal–dual algorithm with adaptive step sizes. The stochastic primal–dual hybrid gradient (SPDHG) algorithm with constant step sizes has become widely applied in large-scale convex optimization across many scientific fields due to its scalability. While the product of the primal and dual step sizes is subject to an upper-bound in order to ensure convergence, the selection of the ratio of the step sizes is critical in applications. Up-to-now there is no systematic and successful way of selecting the primal and dual step sizes for SPDHG. In this work, we propose a general class of adaptive SPDHG (A-SPDHG) algorithms and prove their convergence under weak assumptions. We also propose concrete parameters-updating strategies which satisfy the assumptions of our theory and thereby lead to convergent algorithms. Numerical examples on computed tomography demonstrate the effectiveness of the proposed schemes.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0924-9907
1573-7683
DOI:10.1007/s10851-024-01174-1