Marine ice regulates the future stability of a large Antarctic ice shelf
The collapses of the Larsen A and B ice shelves on the Antarctic Peninsula in 1995 and 2002 confirm the impact of southward-propagating climate warming in this region. Recent mass and dynamic changes of Larsen B’s southern neighbour Larsen C, the fourth largest ice shelf in Antarctica, may herald a...
Gespeichert in:
| Veröffentlicht in: | Nature communications Jg. 5; H. 1; S. 3707 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
22.04.2014
Nature Publishing Group Nature Pub. Group |
| Schlagworte: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The collapses of the Larsen A and B ice shelves on the Antarctic Peninsula in 1995 and 2002 confirm the impact of southward-propagating climate warming in this region. Recent mass and dynamic changes of Larsen B’s southern neighbour Larsen C, the fourth largest ice shelf in Antarctica, may herald a similar instability. Here, using a validated ice-shelf model run in diagnostic mode, constrained by satellite and
in situ
geophysical data, we identify the nature of this potential instability. We demonstrate that the present-day spatial distribution and orientation of the principal stresses within Larsen C ice shelf are akin to those within pre-collapse Larsen B. When Larsen B’s stabilizing frontal portion was lost in 1995, the unstable remaining shelf accelerated, crumbled and ultimately collapsed. We hypothesize that Larsen C ice shelf may suffer a similar fate if it were not stabilized by warm and mechanically soft marine ice, entrained within narrow suture zones.
Signs of instability in the Antarctic Larsen C ice shelf have raised concerns that it might soon collapse like its northern neighbour Larsen B. Kulessa
et al.
combine an ice-shelf model with satellite and geophysical data to show that despite dynamic similarities, Larsen C is presently stabilized by marine ice. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
| ISSN: | 2041-1723 2041-1723 |
| DOI: | 10.1038/ncomms4707 |