A New SCAE-MT Classification Model for Hyperspectral Remote Sensing Images

Hyperspectral remote sensing images (HRSI) have the characteristics of foreign objects with the same spectrum. As it is difficult to label samples manually, the hyperspectral remote sensing images are understood to be typical “small sample” datasets. Deep neural networks can effectively extract the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 22; číslo 22; s. 8881
Hlavní autoři: Chen, Huayue, Chen, Ye, Wang, Qiuyue, Chen, Tao, Zhao, Huimin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 17.11.2022
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Hyperspectral remote sensing images (HRSI) have the characteristics of foreign objects with the same spectrum. As it is difficult to label samples manually, the hyperspectral remote sensing images are understood to be typical “small sample” datasets. Deep neural networks can effectively extract the deep features from the HRSI, but the classification accuracy mainly depends on the training label samples. Therefore, the stacked convolutional autoencoder network and transfer learning strategy are employed in order to design a new stacked convolutional autoencoder network model transfer (SCAE-MT) for the purposes of classifying the HRSI in this paper. In the proposed classification method, the stacked convolutional au-to-encoding network is employed in order to effectively extract the deep features from the HRSI. Then, the transfer learning strategy is applied to design a stacked convolutional autoencoder network model transfer under the small and limited training samples. The SCAE-MT model is used to propose a new HRSI classification method in order to solve the small samples of the HRSI. In this study, in order to prove the effectiveness of the proposed classification method, two HRSI datasets were chosen. In order to verify the effectiveness of the methods, the overall classification accuracy (OA) of the convolutional self-coding network classification method (CAE), the stack convolutional self-coding network classification method (SCAE), and the SCAE-MT method under 5%, 10%, and 15% training sets are calculated. When compared with the CAE and SCAE models in 5%, 10%, and 15% training datasets, the overall accuracy (OA) of the SCAE-MT method was improved by 2.71%, 3.33%, and 3.07% (on average), respectively. The SCAE-MT method is, thus, clearly superior to the other methods and also shows a good classification performance.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22228881