Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas
The outcome for children with high-grade gliomas (HGG) remains dismal, with a 2-year survival rate of only 10% to 30%. Diffuse intrinsic pontine glioma (DIPG) comprise a subset of HGG that arise in the brainstem almost exclusively in children. Genome-wide analyses of copy number imbalances previousl...
Uloženo v:
| Vydáno v: | Cancer research (Chicago, Ill.) Ročník 73; číslo 20; s. 6219 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
15.10.2013
|
| Témata: | |
| ISSN: | 1538-7445, 1538-7445 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The outcome for children with high-grade gliomas (HGG) remains dismal, with a 2-year survival rate of only 10% to 30%. Diffuse intrinsic pontine glioma (DIPG) comprise a subset of HGG that arise in the brainstem almost exclusively in children. Genome-wide analyses of copy number imbalances previously showed that platelet-derived growth factor receptor α (PDGFRA) is the most frequent target of focal amplification in pediatric HGGs, including DIPGs. To determine whether PDGFRA is also targeted by more subtle mutations missed by copy number analysis, we sequenced all PDGFRA coding exons from a cohort of pediatric HGGs. Somatic-activating mutations were identified in 14.4% (13 of 90) of nonbrainstem pediatric HGGs and 4.7% (2 of 43) of DIPGs, including missense mutations and in-frame deletions and insertions not previously described. Forty percent of tumors with mutation showed concurrent amplification, whereas 60% carried heterozygous mutations. Six different mutations impacting different domains all resulted in ligand-independent receptor activation that was blocked by small molecule inhibitors of PDGFR. Expression of mutants in p53-null primary mouse astrocytes conferred a proliferative advantage in vitro and generated HGGs in vivo with complete penetrance when implanted into brain. The gene expression signatures of these murine HGGs reflected the spectrum of human diffuse HGGs. PDGFRA intragenic deletion of exons 8 and 9 were previously shown in adult HGG, but were not detected in 83 nonbrainstem pediatric HGG and 57 DIPGs. Thus, a distinct spectrum of mutations confers constitutive receptor activation and oncogenic activity to PDGFRα in childhood HGG. |
|---|---|
| AbstractList | The outcome for children with high-grade gliomas (HGG) remains dismal, with a 2-year survival rate of only 10% to 30%. Diffuse intrinsic pontine glioma (DIPG) comprise a subset of HGG that arise in the brainstem almost exclusively in children. Genome-wide analyses of copy number imbalances previously showed that platelet-derived growth factor receptor α (PDGFRA) is the most frequent target of focal amplification in pediatric HGGs, including DIPGs. To determine whether PDGFRA is also targeted by more subtle mutations missed by copy number analysis, we sequenced all PDGFRA coding exons from a cohort of pediatric HGGs. Somatic-activating mutations were identified in 14.4% (13 of 90) of nonbrainstem pediatric HGGs and 4.7% (2 of 43) of DIPGs, including missense mutations and in-frame deletions and insertions not previously described. Forty percent of tumors with mutation showed concurrent amplification, whereas 60% carried heterozygous mutations. Six different mutations impacting different domains all resulted in ligand-independent receptor activation that was blocked by small molecule inhibitors of PDGFR. Expression of mutants in p53-null primary mouse astrocytes conferred a proliferative advantage in vitro and generated HGGs in vivo with complete penetrance when implanted into brain. The gene expression signatures of these murine HGGs reflected the spectrum of human diffuse HGGs. PDGFRA intragenic deletion of exons 8 and 9 were previously shown in adult HGG, but were not detected in 83 nonbrainstem pediatric HGG and 57 DIPGs. Thus, a distinct spectrum of mutations confers constitutive receptor activation and oncogenic activity to PDGFRα in childhood HGG.The outcome for children with high-grade gliomas (HGG) remains dismal, with a 2-year survival rate of only 10% to 30%. Diffuse intrinsic pontine glioma (DIPG) comprise a subset of HGG that arise in the brainstem almost exclusively in children. Genome-wide analyses of copy number imbalances previously showed that platelet-derived growth factor receptor α (PDGFRA) is the most frequent target of focal amplification in pediatric HGGs, including DIPGs. To determine whether PDGFRA is also targeted by more subtle mutations missed by copy number analysis, we sequenced all PDGFRA coding exons from a cohort of pediatric HGGs. Somatic-activating mutations were identified in 14.4% (13 of 90) of nonbrainstem pediatric HGGs and 4.7% (2 of 43) of DIPGs, including missense mutations and in-frame deletions and insertions not previously described. Forty percent of tumors with mutation showed concurrent amplification, whereas 60% carried heterozygous mutations. Six different mutations impacting different domains all resulted in ligand-independent receptor activation that was blocked by small molecule inhibitors of PDGFR. Expression of mutants in p53-null primary mouse astrocytes conferred a proliferative advantage in vitro and generated HGGs in vivo with complete penetrance when implanted into brain. The gene expression signatures of these murine HGGs reflected the spectrum of human diffuse HGGs. PDGFRA intragenic deletion of exons 8 and 9 were previously shown in adult HGG, but were not detected in 83 nonbrainstem pediatric HGG and 57 DIPGs. Thus, a distinct spectrum of mutations confers constitutive receptor activation and oncogenic activity to PDGFRα in childhood HGG. The outcome for children with high-grade gliomas (HGG) remains dismal, with a 2-year survival rate of only 10% to 30%. Diffuse intrinsic pontine glioma (DIPG) comprise a subset of HGG that arise in the brainstem almost exclusively in children. Genome-wide analyses of copy number imbalances previously showed that platelet-derived growth factor receptor α (PDGFRA) is the most frequent target of focal amplification in pediatric HGGs, including DIPGs. To determine whether PDGFRA is also targeted by more subtle mutations missed by copy number analysis, we sequenced all PDGFRA coding exons from a cohort of pediatric HGGs. Somatic-activating mutations were identified in 14.4% (13 of 90) of nonbrainstem pediatric HGGs and 4.7% (2 of 43) of DIPGs, including missense mutations and in-frame deletions and insertions not previously described. Forty percent of tumors with mutation showed concurrent amplification, whereas 60% carried heterozygous mutations. Six different mutations impacting different domains all resulted in ligand-independent receptor activation that was blocked by small molecule inhibitors of PDGFR. Expression of mutants in p53-null primary mouse astrocytes conferred a proliferative advantage in vitro and generated HGGs in vivo with complete penetrance when implanted into brain. The gene expression signatures of these murine HGGs reflected the spectrum of human diffuse HGGs. PDGFRA intragenic deletion of exons 8 and 9 were previously shown in adult HGG, but were not detected in 83 nonbrainstem pediatric HGG and 57 DIPGs. Thus, a distinct spectrum of mutations confers constitutive receptor activation and oncogenic activity to PDGFRα in childhood HGG. |
| Author | Diaz, Alexander K Paugh, Barbara S Carvalho, Diana Jones, Chris Baker, Suzanne J Onar-Thomas, Arzu Broniscer, Alberto Qu, Chunxu Zhang, Jinghui Endersby, Raelene Zhang, Junyuan Ellison, David W Bax, Dorine A Wetmore, Cynthia Reis, Rui M Zhu, Xiaoyan |
| Author_xml | – sequence: 1 givenname: Barbara S surname: Paugh fullname: Paugh, Barbara S organization: Authors' Affiliations: Departments of Developmental Neurobiology, Computational Biology, Biostatistics, Oncology, and Pathology, St. Jude Children's Research Hospital; Interdisciplinary Biomedical Science Program, University of Tennessee Health Sciences Center, Memphis, Tennessee; Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Perth, Australia; Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom; and Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil – sequence: 2 givenname: Xiaoyan surname: Zhu fullname: Zhu, Xiaoyan – sequence: 3 givenname: Chunxu surname: Qu fullname: Qu, Chunxu – sequence: 4 givenname: Raelene surname: Endersby fullname: Endersby, Raelene – sequence: 5 givenname: Alexander K surname: Diaz fullname: Diaz, Alexander K – sequence: 6 givenname: Junyuan surname: Zhang fullname: Zhang, Junyuan – sequence: 7 givenname: Dorine A surname: Bax fullname: Bax, Dorine A – sequence: 8 givenname: Diana surname: Carvalho fullname: Carvalho, Diana – sequence: 9 givenname: Rui M surname: Reis fullname: Reis, Rui M – sequence: 10 givenname: Arzu surname: Onar-Thomas fullname: Onar-Thomas, Arzu – sequence: 11 givenname: Alberto surname: Broniscer fullname: Broniscer, Alberto – sequence: 12 givenname: Cynthia surname: Wetmore fullname: Wetmore, Cynthia – sequence: 13 givenname: Jinghui surname: Zhang fullname: Zhang, Jinghui – sequence: 14 givenname: Chris surname: Jones fullname: Jones, Chris – sequence: 15 givenname: David W surname: Ellison fullname: Ellison, David W – sequence: 16 givenname: Suzanne J surname: Baker fullname: Baker, Suzanne J |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23970477$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj01LxDAYhIOsuB_6E5QevWTNZ5PeXFZXhWUV0XNJ07fdSJusTSv47y24gqcZmGcGZo4mPnhA6JKSJaVS3xBCNJZCseV6tcOUYyoyeoJmVHKNlRBy8s9P0TzGj7EiKZFnaMp4pohQaoZud-ELmiR4G2rwziYvdw-b11XSDr3pXfAxcT45QOlM343p3tV7XHemhKRuXGhNPEenlWkiXBx1gd4392_rR7x9fnhar7bYSqJ6nBHBeaUVlWnBREW4KIuCaSCVJlpmFdjU2CwFUSkKWclEqjmRhgpeKm45Zwt0_bt76MLnALHPWxctNI3xEIaYUyG4YONhNaJXR3QoWijzQ-da033nf6_ZD_T1Wjo |
| CitedBy_id | crossref_primary_10_1158_1078_0432_CCR_23_0257 crossref_primary_10_1007_s10637_015_0205_y crossref_primary_10_1007_s00401_021_02354_8 crossref_primary_10_3389_fonc_2022_891543 crossref_primary_10_3390_healthcare11040559 crossref_primary_10_1080_14728222_2023_2277232 crossref_primary_10_4196_kjpp_24_309 crossref_primary_10_1007_s12017_017_8455_9 crossref_primary_10_1007_s11427_016_5006_9 crossref_primary_10_3389_fonc_2024_1347694 crossref_primary_10_1007_s00401_018_1845_8 crossref_primary_10_1002_pbc_27035 crossref_primary_10_1007_s00381_019_04254_5 crossref_primary_10_1093_neuonc_nou330 crossref_primary_10_3389_fonc_2022_922928 crossref_primary_10_3390_ijms26072907 crossref_primary_10_3389_fneur_2021_733323 crossref_primary_10_1186_2051_5960_2_59 crossref_primary_10_1016_j_canlet_2024_216876 crossref_primary_10_1038_s41598_018_29160_9 crossref_primary_10_3389_fonc_2017_00057 crossref_primary_10_1007_s00401_018_1883_2 crossref_primary_10_1080_15287394_2025_2557986 crossref_primary_10_1038_s41467_018_06949_w crossref_primary_10_1016_j_neo_2015_12_002 crossref_primary_10_1007_s40291_017_0299_3 crossref_primary_10_3390_biomedicines10061311 crossref_primary_10_1093_neuonc_noab299 crossref_primary_10_1038_s41598_024_57859_5 crossref_primary_10_1093_jnen_nlac112 crossref_primary_10_1016_j_jmoldx_2016_05_005 crossref_primary_10_1016_S1470_2045_14_71206_9 crossref_primary_10_1172_JCI133310 crossref_primary_10_3389_fninf_2022_800079 crossref_primary_10_3389_fonc_2024_1504440 crossref_primary_10_1016_j_pnpbp_2017_05_019 crossref_primary_10_1016_j_molmed_2020_06_002 crossref_primary_10_1002_cam4_3658 crossref_primary_10_1158_1541_7786_MCR_16_0389 crossref_primary_10_1002_path_4813 crossref_primary_10_1038_s41388_021_02102_y crossref_primary_10_1016_j_bbrc_2016_06_117 crossref_primary_10_1177_03009858241309396 crossref_primary_10_1016_j_pharmthera_2017_08_006 crossref_primary_10_1186_s12967_022_03258_1 crossref_primary_10_1186_s40478_015_0269_0 crossref_primary_10_1016_j_humpath_2019_10_009 crossref_primary_10_1158_1078_0432_CCR_14_0833 crossref_primary_10_1177_03009858241241793 crossref_primary_10_15252_msb_20166969 crossref_primary_10_1016_j_bbcan_2023_188951 crossref_primary_10_1186_s40478_022_01381_0 crossref_primary_10_1007_s00280_022_04412_8 crossref_primary_10_3389_fonc_2022_957267 crossref_primary_10_1016_j_ccell_2025_02_018 crossref_primary_10_1158_1078_0432_CCR_20_1499 crossref_primary_10_1016_j_ebiom_2021_103453 crossref_primary_10_1007_s00428_017_2181_4 crossref_primary_10_3390_biomedicines11072002 crossref_primary_10_1016_j_semcancer_2019_03_006 crossref_primary_10_1007_s00018_020_03753_y crossref_primary_10_1016_j_neo_2025_101231 crossref_primary_10_1158_1078_0432_CCR_24_1063 crossref_primary_10_1007_s10555_019_09824_2 crossref_primary_10_1016_j_wneu_2024_06_163 crossref_primary_10_2217_cns_14_47 crossref_primary_10_1158_2159_8290_CD_23_0004 crossref_primary_10_1371_journal_pone_0111817 crossref_primary_10_2217_cns_14_43 crossref_primary_10_1038_s43018_021_00319_0 crossref_primary_10_1093_neuonc_now101 crossref_primary_10_1186_s40478_014_0134_6 crossref_primary_10_1038_s41591_018_0006_x crossref_primary_10_1016_j_ccell_2017_09_014 crossref_primary_10_1111_bpa_12797 crossref_primary_10_1186_2051_5960_2_23 crossref_primary_10_1002_glia_22945 crossref_primary_10_1007_s12264_022_00953_3 crossref_primary_10_1016_j_yexcr_2017_09_032 crossref_primary_10_1007_s10555_023_10105_2 crossref_primary_10_1371_journal_pone_0142612 crossref_primary_10_1007_s00401_016_1539_z crossref_primary_10_1097_MPH_0000000000000551 crossref_primary_10_1186_s13046_021_02082_7 crossref_primary_10_1002_pbc_31692 crossref_primary_10_1172_JCI154229 crossref_primary_10_1007_s00381_015_2832_1 crossref_primary_10_3390_cells10112940 crossref_primary_10_1093_neuonc_noab004 crossref_primary_10_3389_fonc_2020_607429 crossref_primary_10_1155_2018_4596812 crossref_primary_10_1038_s41389_017_0012_8 crossref_primary_10_3389_fendo_2018_00313 crossref_primary_10_3389_fphar_2018_00683 crossref_primary_10_1002_pbc_26409 crossref_primary_10_1038_s41467_021_24168_8 crossref_primary_10_3390_ijms21249654 crossref_primary_10_1111_cns_14730 crossref_primary_10_1016_j_bbcan_2014_04_004 crossref_primary_10_3389_fphar_2017_00495 crossref_primary_10_1007_s00401_015_1420_5 crossref_primary_10_1159_000531040 crossref_primary_10_1016_j_critrevonc_2023_104188 crossref_primary_10_3390_pharmaceutics16121528 crossref_primary_10_1155_2015_215135 crossref_primary_10_1038_s41467_019_11661_4 crossref_primary_10_1371_journal_pone_0176855 crossref_primary_10_1002_wdev_342 crossref_primary_10_1016_j_drup_2019_06_001 crossref_primary_10_1080_17512433_2023_2163385 crossref_primary_10_1111_nan_12591 crossref_primary_10_2217_fon_14_83 crossref_primary_10_1016_j_ejca_2021_05_023 crossref_primary_10_1093_jnci_djw274 crossref_primary_10_1371_journal_pone_0118926 crossref_primary_10_1007_s00381_019_04372_0 crossref_primary_10_1016_j_spen_2014_12_003 crossref_primary_10_1002_ijc_31926 crossref_primary_10_1016_j_ccell_2017_03_011 crossref_primary_10_3390_cells13131122 crossref_primary_10_1146_annurev_cancerbio_030617_050143 crossref_primary_10_1016_j_mpdhp_2014_01_003 crossref_primary_10_3390_cancers13051114 crossref_primary_10_1002_path_5020 crossref_primary_10_1016_j_ccell_2018_11_015 crossref_primary_10_1016_j_cell_2020_11_012 crossref_primary_10_1002_gcc_23054 crossref_primary_10_1158_1078_0432_CCR_24_1256 crossref_primary_10_1016_j_cytogfr_2014_03_003 crossref_primary_10_1038_nrc3811 crossref_primary_10_1093_noajnl_vdaf110 crossref_primary_10_1148_rg_2018180109 crossref_primary_10_1002_pmic_201800479 crossref_primary_10_1126_science_1253799 crossref_primary_10_1007_s13402_016_0270_z crossref_primary_10_1038_nrc3655 crossref_primary_10_3390_cancers17132221 crossref_primary_10_1200_JCO_2017_73_0242 crossref_primary_10_1007_s00401_021_02382_4 crossref_primary_10_1016_j_semradonc_2014_06_003 crossref_primary_10_1007_s00401_017_1671_4 crossref_primary_10_1016_j_ccell_2017_08_017 crossref_primary_10_1186_s41016_020_00218_w crossref_primary_10_3390_pharmaceutics14091762 crossref_primary_10_3390_cancers13215491 crossref_primary_10_1038_s41392_024_01899_w crossref_primary_10_1093_neuonc_noaf035 crossref_primary_10_1186_s40478_020_00992_9 crossref_primary_10_1038_s41598_022_05391_9 crossref_primary_10_1002_pbc_26751 |
| ContentType | Journal Article |
| Copyright | 2013 AACR. |
| Copyright_xml | – notice: 2013 AACR. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1158/0008-5472.CAN-13-1491 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1538-7445 |
| ExternalDocumentID | 23970477 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA021765 – fundername: NCI NIH HHS grantid: P01 CA096832 – fundername: NCI NIH HHS grantid: R01 CA135554 |
| GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC ABOCM ACGFO ACIWK ACPRK ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CGR CS3 CUY CVF DIK DU5 EBS ECM EIF EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO NPM OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 UDS W2D W8F WH7 WOQ YKV YZZ 7X8 |
| ID | FETCH-LOGICAL-c507t-90433f87156b24f034dbb28e0f80859fec6ac96e4f71e9d2468305a143d73c332 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 176 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000325796100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1538-7445 |
| IngestDate | Sun Aug 24 02:52:03 EDT 2025 Mon Jul 21 05:56:45 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| License | 2013 AACR. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c507t-90433f87156b24f034dbb28e0f80859fec6ac96e4f71e9d2468305a143d73c332 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://cancerres.aacrjournals.org/content/canres/73/20/6219.full.pdf |
| PMID | 23970477 |
| PQID | 1443425387 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1443425387 pubmed_primary_23970477 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-10-15 |
| PublicationDateYYYYMMDD | 2013-10-15 |
| PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cancer research (Chicago, Ill.) |
| PublicationTitleAlternate | Cancer Res |
| PublicationYear | 2013 |
| References | 14967142 - Mol Cell. 2004 Feb 13;13(3):341-55 8943348 - Mol Cell Biol. 1996 Dec;16(12):6926-36 9885210 - Blood. 1999 Jan 15;93(2):488-99 18171944 - J Neurosci. 2008 Jan 2;28(1):264-78 20479398 - J Clin Oncol. 2010 Jun 20;28(18):3061-8 21397855 - Cancer Cell. 2011 Mar 8;19(3):305-16 22389665 - PLoS One. 2012;7(2):e30313 23293772 - Front Oncol. 2012 Dec 28;2:205 9438854 - Science. 1998 Jan 23;279(5350):577-80 20036637 - Biochim Biophys Acta. 2010 Mar;1798(3):605-15 21305617 - Glia. 2011 Aug;59(8):1155-68 18483355 - Clin Cancer Res. 2008 May 15;14(10):2895-9 15615512 - J Med Chem. 2004 Dec 30;47(27):6658-61 1306311 - Tohoku J Exp Med. 1992 Oct;168(2):265-9 17438529 - Oncogene. 2007 Sep 20;26(43):6289-96 19738123 - J Clin Oncol. 2009 Nov 1;27(31):5262-9 16846854 - Neuron. 2006 Jul 20;51(2):187-99 1646396 - Mol Cell Biol. 1991 Jul;11(7):3780-5 17875932 - Mol Cell Biol. 2007 Nov;27(22):7918-34 15928335 - J Clin Oncol. 2005 Aug 10;23(23):5357-64 17618441 - Acta Neuropathol. 2007 Aug;114(2):97-109 19813274 - Cancer. 2009 Dec 15;115(24):5761-70 17974913 - Genes Dev. 2007 Nov 1;21(21):2683-710 21931021 - J Clin Oncol. 2011 Oct 20;29(30):3999-4006 21251612 - Cancer Cell. 2011 Jan 18;19(1):11-5 18483217 - Genes Dev. 2008 May 15;22(10):1276-312 17328268 - J Neurosurg. 2006 Nov;105(5 Suppl):418-24 12086863 - Cancer Cell. 2002 Apr;1(3):269-77 20570930 - Clin Cancer Res. 2010 Jul 1;16(13):3368-77 16530701 - Cancer Cell. 2006 Mar;9(3):157-73 9850047 - Cancer Res. 1998 Dec 1;58(23):5275-9 16632515 - Biostatistics. 2007 Jan;8(1):118-27 18772396 - Science. 2008 Sep 26;321(5897):1807-12 12181311 - J Biol Chem. 2002 Oct 11;277(41):38627-34 16046538 - Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11011-6 19421151 - Oncogene. 2009 Jun 11;28(23):2266-75 21625383 - PLoS One. 2011;6(5):e20041 22588883 - Cancer Discov. 2012 May;2(5):458-71 18952581 - J Child Neurol. 2008 Oct;23(10):1149-59 20129251 - Cancer Cell. 2010 Jan 19;17(1):98-110 12907595 - Cancer Res. 2003 Aug 1;63(15):4305-9 22286061 - Nature. 2012 Feb 9;482(7384):226-31 18772890 - Nature. 2008 Oct 23;455(7216):1061-8 11485986 - Genes Dev. 2001 Aug 1;15(15):1913-25 22286216 - Nat Genet. 2012 Mar;44(3):251-3 21507933 - Cancer Res. 2011 Jun 15;71(12):4106-16 19847166 - Nature. 2009 Nov 5;462(7269):108-12 9739761 - Biochim Biophys Acta. 1998 Aug 19;1378(1):F79-113 15223958 - Am J Surg Pathol. 2004 Jul;28(7):889-94 20142589 - J Clin Oncol. 2010 Mar 10;28(8):1337-44 20197468 - Cancer Res. 2010 Mar 15;70(6):2548-57 20889717 - Genes Dev. 2010 Oct 1;24(19):2205-18 21393858 - J Clin Invest. 2011 Mar;121(3):905-17 22745105 - Clin Cancer Res. 2012 Aug 15;18(16):4375-84 23152448 - Genes Dev. 2012 Dec 1;26(23):2561-6 |
| References_xml | – reference: 22588883 - Cancer Discov. 2012 May;2(5):458-71 – reference: 17618441 - Acta Neuropathol. 2007 Aug;114(2):97-109 – reference: 12086863 - Cancer Cell. 2002 Apr;1(3):269-77 – reference: 20129251 - Cancer Cell. 2010 Jan 19;17(1):98-110 – reference: 22389665 - PLoS One. 2012;7(2):e30313 – reference: 22286216 - Nat Genet. 2012 Mar;44(3):251-3 – reference: 21625383 - PLoS One. 2011;6(5):e20041 – reference: 1646396 - Mol Cell Biol. 1991 Jul;11(7):3780-5 – reference: 18772890 - Nature. 2008 Oct 23;455(7216):1061-8 – reference: 15223958 - Am J Surg Pathol. 2004 Jul;28(7):889-94 – reference: 21305617 - Glia. 2011 Aug;59(8):1155-68 – reference: 8943348 - Mol Cell Biol. 1996 Dec;16(12):6926-36 – reference: 18171944 - J Neurosci. 2008 Jan 2;28(1):264-78 – reference: 9885210 - Blood. 1999 Jan 15;93(2):488-99 – reference: 18483355 - Clin Cancer Res. 2008 May 15;14(10):2895-9 – reference: 14967142 - Mol Cell. 2004 Feb 13;13(3):341-55 – reference: 9739761 - Biochim Biophys Acta. 1998 Aug 19;1378(1):F79-113 – reference: 19421151 - Oncogene. 2009 Jun 11;28(23):2266-75 – reference: 17328268 - J Neurosurg. 2006 Nov;105(5 Suppl):418-24 – reference: 11485986 - Genes Dev. 2001 Aug 1;15(15):1913-25 – reference: 18952581 - J Child Neurol. 2008 Oct;23(10):1149-59 – reference: 12907595 - Cancer Res. 2003 Aug 1;63(15):4305-9 – reference: 19738123 - J Clin Oncol. 2009 Nov 1;27(31):5262-9 – reference: 9850047 - Cancer Res. 1998 Dec 1;58(23):5275-9 – reference: 12181311 - J Biol Chem. 2002 Oct 11;277(41):38627-34 – reference: 16632515 - Biostatistics. 2007 Jan;8(1):118-27 – reference: 21397855 - Cancer Cell. 2011 Mar 8;19(3):305-16 – reference: 20889717 - Genes Dev. 2010 Oct 1;24(19):2205-18 – reference: 17875932 - Mol Cell Biol. 2007 Nov;27(22):7918-34 – reference: 16046538 - Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11011-6 – reference: 20479398 - J Clin Oncol. 2010 Jun 20;28(18):3061-8 – reference: 19813274 - Cancer. 2009 Dec 15;115(24):5761-70 – reference: 19847166 - Nature. 2009 Nov 5;462(7269):108-12 – reference: 22745105 - Clin Cancer Res. 2012 Aug 15;18(16):4375-84 – reference: 21931021 - J Clin Oncol. 2011 Oct 20;29(30):3999-4006 – reference: 17974913 - Genes Dev. 2007 Nov 1;21(21):2683-710 – reference: 21507933 - Cancer Res. 2011 Jun 15;71(12):4106-16 – reference: 22286061 - Nature. 2012 Feb 9;482(7384):226-31 – reference: 1306311 - Tohoku J Exp Med. 1992 Oct;168(2):265-9 – reference: 20570930 - Clin Cancer Res. 2010 Jul 1;16(13):3368-77 – reference: 16846854 - Neuron. 2006 Jul 20;51(2):187-99 – reference: 20142589 - J Clin Oncol. 2010 Mar 10;28(8):1337-44 – reference: 15615512 - J Med Chem. 2004 Dec 30;47(27):6658-61 – reference: 18772396 - Science. 2008 Sep 26;321(5897):1807-12 – reference: 18483217 - Genes Dev. 2008 May 15;22(10):1276-312 – reference: 23293772 - Front Oncol. 2012 Dec 28;2:205 – reference: 23152448 - Genes Dev. 2012 Dec 1;26(23):2561-6 – reference: 16530701 - Cancer Cell. 2006 Mar;9(3):157-73 – reference: 20197468 - Cancer Res. 2010 Mar 15;70(6):2548-57 – reference: 21251612 - Cancer Cell. 2011 Jan 18;19(1):11-5 – reference: 21393858 - J Clin Invest. 2011 Mar;121(3):905-17 – reference: 15928335 - J Clin Oncol. 2005 Aug 10;23(23):5357-64 – reference: 17438529 - Oncogene. 2007 Sep 20;26(43):6289-96 – reference: 20036637 - Biochim Biophys Acta. 2010 Mar;1798(3):605-15 – reference: 9438854 - Science. 1998 Jan 23;279(5350):577-80 |
| SSID | ssj0005105 |
| Score | 2.5257878 |
| Snippet | The outcome for children with high-grade gliomas (HGG) remains dismal, with a 2-year survival rate of only 10% to 30%. Diffuse intrinsic pontine glioma (DIPG)... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 6219 |
| SubjectTerms | Adolescent Animals Brain Neoplasms - genetics Brain Neoplasms - pathology Child Child, Preschool Gene Expression Profiling Genome-Wide Association Study Glioma - genetics Glioma - pathology Humans Mice Mutation Receptor, Platelet-Derived Growth Factor alpha - genetics Receptor, Platelet-Derived Growth Factor alpha - metabolism |
| Title | Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23970477 https://www.proquest.com/docview/1443425387 |
| Volume | 73 |
| WOSCitedRecordID | wos000325796100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB3Uirjx_agvRnA72sw7Ky3V6qahiEJ3IZlHCdSkNm2_35kkpStBcJNdINyce-fM3DvnAHBnHXJd2oRIEZ0iqnmKEh0w1DGcppZLpqyszCZEFMnRKBw2B25lM1a5qolVodaF8mfkD474E4cvIsXj9Bt51yjfXW0sNDZBizgq41EtRmu1cFaPMFZJLShlzQ2egEl_gUEiRgW-73UjFBDkdgrB7yyzWm36-__9zgOw1_BM2K2BcQg2TH4EdgZNJ_0YPEXF0kxgkavCQShTcPj82n_vwq9F3ZsvYZbD6crHA3pVYzSeJdrA8STzM0Un4LP_8tF7Q42bAlKO881R6KXKrNsfMZ5iajuE6jTF0nSs9CJn1iieqJAbakVgQo0pl64WJI5PaUEUIfgUbOVFbs4BlDykNsCG-D-ahDahXInEaJlaph0laoPbVWxih1bfgkhyUyzKeB2dNjirAxxPa1mNGDtq1KFCXPzh7Uuwi70vhR8tYVegZV2ummuwrZbzrJzdVDBwz2g4-AF4ZrpO |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+oncogenic+PDGFRA+mutations+in+pediatric+high-grade+gliomas&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Paugh%2C+Barbara+S&rft.au=Zhu%2C+Xiaoyan&rft.au=Qu%2C+Chunxu&rft.au=Endersby%2C+Raelene&rft.date=2013-10-15&rft.issn=1538-7445&rft.eissn=1538-7445&rft.volume=73&rft.issue=20&rft.spage=6219&rft_id=info:doi/10.1158%2F0008-5472.CAN-13-1491&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-7445&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-7445&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-7445&client=summon |