Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas

The outcome for children with high-grade gliomas (HGG) remains dismal, with a 2-year survival rate of only 10% to 30%. Diffuse intrinsic pontine glioma (DIPG) comprise a subset of HGG that arise in the brainstem almost exclusively in children. Genome-wide analyses of copy number imbalances previousl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cancer research (Chicago, Ill.) Ročník 73; číslo 20; s. 6219
Hlavní autoři: Paugh, Barbara S, Zhu, Xiaoyan, Qu, Chunxu, Endersby, Raelene, Diaz, Alexander K, Zhang, Junyuan, Bax, Dorine A, Carvalho, Diana, Reis, Rui M, Onar-Thomas, Arzu, Broniscer, Alberto, Wetmore, Cynthia, Zhang, Jinghui, Jones, Chris, Ellison, David W, Baker, Suzanne J
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 15.10.2013
Témata:
ISSN:1538-7445, 1538-7445
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The outcome for children with high-grade gliomas (HGG) remains dismal, with a 2-year survival rate of only 10% to 30%. Diffuse intrinsic pontine glioma (DIPG) comprise a subset of HGG that arise in the brainstem almost exclusively in children. Genome-wide analyses of copy number imbalances previously showed that platelet-derived growth factor receptor α (PDGFRA) is the most frequent target of focal amplification in pediatric HGGs, including DIPGs. To determine whether PDGFRA is also targeted by more subtle mutations missed by copy number analysis, we sequenced all PDGFRA coding exons from a cohort of pediatric HGGs. Somatic-activating mutations were identified in 14.4% (13 of 90) of nonbrainstem pediatric HGGs and 4.7% (2 of 43) of DIPGs, including missense mutations and in-frame deletions and insertions not previously described. Forty percent of tumors with mutation showed concurrent amplification, whereas 60% carried heterozygous mutations. Six different mutations impacting different domains all resulted in ligand-independent receptor activation that was blocked by small molecule inhibitors of PDGFR. Expression of mutants in p53-null primary mouse astrocytes conferred a proliferative advantage in vitro and generated HGGs in vivo with complete penetrance when implanted into brain. The gene expression signatures of these murine HGGs reflected the spectrum of human diffuse HGGs. PDGFRA intragenic deletion of exons 8 and 9 were previously shown in adult HGG, but were not detected in 83 nonbrainstem pediatric HGG and 57 DIPGs. Thus, a distinct spectrum of mutations confers constitutive receptor activation and oncogenic activity to PDGFRα in childhood HGG.
AbstractList The outcome for children with high-grade gliomas (HGG) remains dismal, with a 2-year survival rate of only 10% to 30%. Diffuse intrinsic pontine glioma (DIPG) comprise a subset of HGG that arise in the brainstem almost exclusively in children. Genome-wide analyses of copy number imbalances previously showed that platelet-derived growth factor receptor α (PDGFRA) is the most frequent target of focal amplification in pediatric HGGs, including DIPGs. To determine whether PDGFRA is also targeted by more subtle mutations missed by copy number analysis, we sequenced all PDGFRA coding exons from a cohort of pediatric HGGs. Somatic-activating mutations were identified in 14.4% (13 of 90) of nonbrainstem pediatric HGGs and 4.7% (2 of 43) of DIPGs, including missense mutations and in-frame deletions and insertions not previously described. Forty percent of tumors with mutation showed concurrent amplification, whereas 60% carried heterozygous mutations. Six different mutations impacting different domains all resulted in ligand-independent receptor activation that was blocked by small molecule inhibitors of PDGFR. Expression of mutants in p53-null primary mouse astrocytes conferred a proliferative advantage in vitro and generated HGGs in vivo with complete penetrance when implanted into brain. The gene expression signatures of these murine HGGs reflected the spectrum of human diffuse HGGs. PDGFRA intragenic deletion of exons 8 and 9 were previously shown in adult HGG, but were not detected in 83 nonbrainstem pediatric HGG and 57 DIPGs. Thus, a distinct spectrum of mutations confers constitutive receptor activation and oncogenic activity to PDGFRα in childhood HGG.The outcome for children with high-grade gliomas (HGG) remains dismal, with a 2-year survival rate of only 10% to 30%. Diffuse intrinsic pontine glioma (DIPG) comprise a subset of HGG that arise in the brainstem almost exclusively in children. Genome-wide analyses of copy number imbalances previously showed that platelet-derived growth factor receptor α (PDGFRA) is the most frequent target of focal amplification in pediatric HGGs, including DIPGs. To determine whether PDGFRA is also targeted by more subtle mutations missed by copy number analysis, we sequenced all PDGFRA coding exons from a cohort of pediatric HGGs. Somatic-activating mutations were identified in 14.4% (13 of 90) of nonbrainstem pediatric HGGs and 4.7% (2 of 43) of DIPGs, including missense mutations and in-frame deletions and insertions not previously described. Forty percent of tumors with mutation showed concurrent amplification, whereas 60% carried heterozygous mutations. Six different mutations impacting different domains all resulted in ligand-independent receptor activation that was blocked by small molecule inhibitors of PDGFR. Expression of mutants in p53-null primary mouse astrocytes conferred a proliferative advantage in vitro and generated HGGs in vivo with complete penetrance when implanted into brain. The gene expression signatures of these murine HGGs reflected the spectrum of human diffuse HGGs. PDGFRA intragenic deletion of exons 8 and 9 were previously shown in adult HGG, but were not detected in 83 nonbrainstem pediatric HGG and 57 DIPGs. Thus, a distinct spectrum of mutations confers constitutive receptor activation and oncogenic activity to PDGFRα in childhood HGG.
The outcome for children with high-grade gliomas (HGG) remains dismal, with a 2-year survival rate of only 10% to 30%. Diffuse intrinsic pontine glioma (DIPG) comprise a subset of HGG that arise in the brainstem almost exclusively in children. Genome-wide analyses of copy number imbalances previously showed that platelet-derived growth factor receptor α (PDGFRA) is the most frequent target of focal amplification in pediatric HGGs, including DIPGs. To determine whether PDGFRA is also targeted by more subtle mutations missed by copy number analysis, we sequenced all PDGFRA coding exons from a cohort of pediatric HGGs. Somatic-activating mutations were identified in 14.4% (13 of 90) of nonbrainstem pediatric HGGs and 4.7% (2 of 43) of DIPGs, including missense mutations and in-frame deletions and insertions not previously described. Forty percent of tumors with mutation showed concurrent amplification, whereas 60% carried heterozygous mutations. Six different mutations impacting different domains all resulted in ligand-independent receptor activation that was blocked by small molecule inhibitors of PDGFR. Expression of mutants in p53-null primary mouse astrocytes conferred a proliferative advantage in vitro and generated HGGs in vivo with complete penetrance when implanted into brain. The gene expression signatures of these murine HGGs reflected the spectrum of human diffuse HGGs. PDGFRA intragenic deletion of exons 8 and 9 were previously shown in adult HGG, but were not detected in 83 nonbrainstem pediatric HGG and 57 DIPGs. Thus, a distinct spectrum of mutations confers constitutive receptor activation and oncogenic activity to PDGFRα in childhood HGG.
Author Diaz, Alexander K
Paugh, Barbara S
Carvalho, Diana
Jones, Chris
Baker, Suzanne J
Onar-Thomas, Arzu
Broniscer, Alberto
Qu, Chunxu
Zhang, Jinghui
Endersby, Raelene
Zhang, Junyuan
Ellison, David W
Bax, Dorine A
Wetmore, Cynthia
Reis, Rui M
Zhu, Xiaoyan
Author_xml – sequence: 1
  givenname: Barbara S
  surname: Paugh
  fullname: Paugh, Barbara S
  organization: Authors' Affiliations: Departments of Developmental Neurobiology, Computational Biology, Biostatistics, Oncology, and Pathology, St. Jude Children's Research Hospital; Interdisciplinary Biomedical Science Program, University of Tennessee Health Sciences Center, Memphis, Tennessee; Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Perth, Australia; Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom; and Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
– sequence: 2
  givenname: Xiaoyan
  surname: Zhu
  fullname: Zhu, Xiaoyan
– sequence: 3
  givenname: Chunxu
  surname: Qu
  fullname: Qu, Chunxu
– sequence: 4
  givenname: Raelene
  surname: Endersby
  fullname: Endersby, Raelene
– sequence: 5
  givenname: Alexander K
  surname: Diaz
  fullname: Diaz, Alexander K
– sequence: 6
  givenname: Junyuan
  surname: Zhang
  fullname: Zhang, Junyuan
– sequence: 7
  givenname: Dorine A
  surname: Bax
  fullname: Bax, Dorine A
– sequence: 8
  givenname: Diana
  surname: Carvalho
  fullname: Carvalho, Diana
– sequence: 9
  givenname: Rui M
  surname: Reis
  fullname: Reis, Rui M
– sequence: 10
  givenname: Arzu
  surname: Onar-Thomas
  fullname: Onar-Thomas, Arzu
– sequence: 11
  givenname: Alberto
  surname: Broniscer
  fullname: Broniscer, Alberto
– sequence: 12
  givenname: Cynthia
  surname: Wetmore
  fullname: Wetmore, Cynthia
– sequence: 13
  givenname: Jinghui
  surname: Zhang
  fullname: Zhang, Jinghui
– sequence: 14
  givenname: Chris
  surname: Jones
  fullname: Jones, Chris
– sequence: 15
  givenname: David W
  surname: Ellison
  fullname: Ellison, David W
– sequence: 16
  givenname: Suzanne J
  surname: Baker
  fullname: Baker, Suzanne J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23970477$$D View this record in MEDLINE/PubMed
BookMark eNpNj01LxDAYhIOsuB_6E5QevWTNZ5PeXFZXhWUV0XNJ07fdSJusTSv47y24gqcZmGcGZo4mPnhA6JKSJaVS3xBCNJZCseV6tcOUYyoyeoJmVHKNlRBy8s9P0TzGj7EiKZFnaMp4pohQaoZud-ELmiR4G2rwziYvdw-b11XSDr3pXfAxcT45QOlM343p3tV7XHemhKRuXGhNPEenlWkiXBx1gd4392_rR7x9fnhar7bYSqJ6nBHBeaUVlWnBREW4KIuCaSCVJlpmFdjU2CwFUSkKWclEqjmRhgpeKm45Zwt0_bt76MLnALHPWxctNI3xEIaYUyG4YONhNaJXR3QoWijzQ-da033nf6_ZD_T1Wjo
CitedBy_id crossref_primary_10_1158_1078_0432_CCR_23_0257
crossref_primary_10_1007_s10637_015_0205_y
crossref_primary_10_1007_s00401_021_02354_8
crossref_primary_10_3389_fonc_2022_891543
crossref_primary_10_3390_healthcare11040559
crossref_primary_10_1080_14728222_2023_2277232
crossref_primary_10_4196_kjpp_24_309
crossref_primary_10_1007_s12017_017_8455_9
crossref_primary_10_1007_s11427_016_5006_9
crossref_primary_10_3389_fonc_2024_1347694
crossref_primary_10_1007_s00401_018_1845_8
crossref_primary_10_1002_pbc_27035
crossref_primary_10_1007_s00381_019_04254_5
crossref_primary_10_1093_neuonc_nou330
crossref_primary_10_3389_fonc_2022_922928
crossref_primary_10_3390_ijms26072907
crossref_primary_10_3389_fneur_2021_733323
crossref_primary_10_1186_2051_5960_2_59
crossref_primary_10_1016_j_canlet_2024_216876
crossref_primary_10_1038_s41598_018_29160_9
crossref_primary_10_3389_fonc_2017_00057
crossref_primary_10_1007_s00401_018_1883_2
crossref_primary_10_1080_15287394_2025_2557986
crossref_primary_10_1038_s41467_018_06949_w
crossref_primary_10_1016_j_neo_2015_12_002
crossref_primary_10_1007_s40291_017_0299_3
crossref_primary_10_3390_biomedicines10061311
crossref_primary_10_1093_neuonc_noab299
crossref_primary_10_1038_s41598_024_57859_5
crossref_primary_10_1093_jnen_nlac112
crossref_primary_10_1016_j_jmoldx_2016_05_005
crossref_primary_10_1016_S1470_2045_14_71206_9
crossref_primary_10_1172_JCI133310
crossref_primary_10_3389_fninf_2022_800079
crossref_primary_10_3389_fonc_2024_1504440
crossref_primary_10_1016_j_pnpbp_2017_05_019
crossref_primary_10_1016_j_molmed_2020_06_002
crossref_primary_10_1002_cam4_3658
crossref_primary_10_1158_1541_7786_MCR_16_0389
crossref_primary_10_1002_path_4813
crossref_primary_10_1038_s41388_021_02102_y
crossref_primary_10_1016_j_bbrc_2016_06_117
crossref_primary_10_1177_03009858241309396
crossref_primary_10_1016_j_pharmthera_2017_08_006
crossref_primary_10_1186_s12967_022_03258_1
crossref_primary_10_1186_s40478_015_0269_0
crossref_primary_10_1016_j_humpath_2019_10_009
crossref_primary_10_1158_1078_0432_CCR_14_0833
crossref_primary_10_1177_03009858241241793
crossref_primary_10_15252_msb_20166969
crossref_primary_10_1016_j_bbcan_2023_188951
crossref_primary_10_1186_s40478_022_01381_0
crossref_primary_10_1007_s00280_022_04412_8
crossref_primary_10_3389_fonc_2022_957267
crossref_primary_10_1016_j_ccell_2025_02_018
crossref_primary_10_1158_1078_0432_CCR_20_1499
crossref_primary_10_1016_j_ebiom_2021_103453
crossref_primary_10_1007_s00428_017_2181_4
crossref_primary_10_3390_biomedicines11072002
crossref_primary_10_1016_j_semcancer_2019_03_006
crossref_primary_10_1007_s00018_020_03753_y
crossref_primary_10_1016_j_neo_2025_101231
crossref_primary_10_1158_1078_0432_CCR_24_1063
crossref_primary_10_1007_s10555_019_09824_2
crossref_primary_10_1016_j_wneu_2024_06_163
crossref_primary_10_2217_cns_14_47
crossref_primary_10_1158_2159_8290_CD_23_0004
crossref_primary_10_1371_journal_pone_0111817
crossref_primary_10_2217_cns_14_43
crossref_primary_10_1038_s43018_021_00319_0
crossref_primary_10_1093_neuonc_now101
crossref_primary_10_1186_s40478_014_0134_6
crossref_primary_10_1038_s41591_018_0006_x
crossref_primary_10_1016_j_ccell_2017_09_014
crossref_primary_10_1111_bpa_12797
crossref_primary_10_1186_2051_5960_2_23
crossref_primary_10_1002_glia_22945
crossref_primary_10_1007_s12264_022_00953_3
crossref_primary_10_1016_j_yexcr_2017_09_032
crossref_primary_10_1007_s10555_023_10105_2
crossref_primary_10_1371_journal_pone_0142612
crossref_primary_10_1007_s00401_016_1539_z
crossref_primary_10_1097_MPH_0000000000000551
crossref_primary_10_1186_s13046_021_02082_7
crossref_primary_10_1002_pbc_31692
crossref_primary_10_1172_JCI154229
crossref_primary_10_1007_s00381_015_2832_1
crossref_primary_10_3390_cells10112940
crossref_primary_10_1093_neuonc_noab004
crossref_primary_10_3389_fonc_2020_607429
crossref_primary_10_1155_2018_4596812
crossref_primary_10_1038_s41389_017_0012_8
crossref_primary_10_3389_fendo_2018_00313
crossref_primary_10_3389_fphar_2018_00683
crossref_primary_10_1002_pbc_26409
crossref_primary_10_1038_s41467_021_24168_8
crossref_primary_10_3390_ijms21249654
crossref_primary_10_1111_cns_14730
crossref_primary_10_1016_j_bbcan_2014_04_004
crossref_primary_10_3389_fphar_2017_00495
crossref_primary_10_1007_s00401_015_1420_5
crossref_primary_10_1159_000531040
crossref_primary_10_1016_j_critrevonc_2023_104188
crossref_primary_10_3390_pharmaceutics16121528
crossref_primary_10_1155_2015_215135
crossref_primary_10_1038_s41467_019_11661_4
crossref_primary_10_1371_journal_pone_0176855
crossref_primary_10_1002_wdev_342
crossref_primary_10_1016_j_drup_2019_06_001
crossref_primary_10_1080_17512433_2023_2163385
crossref_primary_10_1111_nan_12591
crossref_primary_10_2217_fon_14_83
crossref_primary_10_1016_j_ejca_2021_05_023
crossref_primary_10_1093_jnci_djw274
crossref_primary_10_1371_journal_pone_0118926
crossref_primary_10_1007_s00381_019_04372_0
crossref_primary_10_1016_j_spen_2014_12_003
crossref_primary_10_1002_ijc_31926
crossref_primary_10_1016_j_ccell_2017_03_011
crossref_primary_10_3390_cells13131122
crossref_primary_10_1146_annurev_cancerbio_030617_050143
crossref_primary_10_1016_j_mpdhp_2014_01_003
crossref_primary_10_3390_cancers13051114
crossref_primary_10_1002_path_5020
crossref_primary_10_1016_j_ccell_2018_11_015
crossref_primary_10_1016_j_cell_2020_11_012
crossref_primary_10_1002_gcc_23054
crossref_primary_10_1158_1078_0432_CCR_24_1256
crossref_primary_10_1016_j_cytogfr_2014_03_003
crossref_primary_10_1038_nrc3811
crossref_primary_10_1093_noajnl_vdaf110
crossref_primary_10_1148_rg_2018180109
crossref_primary_10_1002_pmic_201800479
crossref_primary_10_1126_science_1253799
crossref_primary_10_1007_s13402_016_0270_z
crossref_primary_10_1038_nrc3655
crossref_primary_10_3390_cancers17132221
crossref_primary_10_1200_JCO_2017_73_0242
crossref_primary_10_1007_s00401_021_02382_4
crossref_primary_10_1016_j_semradonc_2014_06_003
crossref_primary_10_1007_s00401_017_1671_4
crossref_primary_10_1016_j_ccell_2017_08_017
crossref_primary_10_1186_s41016_020_00218_w
crossref_primary_10_3390_pharmaceutics14091762
crossref_primary_10_3390_cancers13215491
crossref_primary_10_1038_s41392_024_01899_w
crossref_primary_10_1093_neuonc_noaf035
crossref_primary_10_1186_s40478_020_00992_9
crossref_primary_10_1038_s41598_022_05391_9
crossref_primary_10_1002_pbc_26751
ContentType Journal Article
Copyright 2013 AACR.
Copyright_xml – notice: 2013 AACR.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1158/0008-5472.CAN-13-1491
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
ExternalDocumentID 23970477
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA021765
– fundername: NCI NIH HHS
  grantid: P01 CA096832
– fundername: NCI NIH HHS
  grantid: R01 CA135554
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
ABOCM
ACGFO
ACIWK
ACPRK
ADBBV
ADCOW
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
NPM
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
UDS
W2D
W8F
WH7
WOQ
YKV
YZZ
7X8
ID FETCH-LOGICAL-c507t-90433f87156b24f034dbb28e0f80859fec6ac96e4f71e9d2468305a143d73c332
IEDL.DBID 7X8
ISICitedReferencesCount 176
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000325796100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1538-7445
IngestDate Sun Aug 24 02:52:03 EDT 2025
Mon Jul 21 05:56:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License 2013 AACR.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-90433f87156b24f034dbb28e0f80859fec6ac96e4f71e9d2468305a143d73c332
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://cancerres.aacrjournals.org/content/canres/73/20/6219.full.pdf
PMID 23970477
PQID 1443425387
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1443425387
pubmed_primary_23970477
PublicationCentury 2000
PublicationDate 2013-10-15
PublicationDateYYYYMMDD 2013-10-15
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2013
References 14967142 - Mol Cell. 2004 Feb 13;13(3):341-55
8943348 - Mol Cell Biol. 1996 Dec;16(12):6926-36
9885210 - Blood. 1999 Jan 15;93(2):488-99
18171944 - J Neurosci. 2008 Jan 2;28(1):264-78
20479398 - J Clin Oncol. 2010 Jun 20;28(18):3061-8
21397855 - Cancer Cell. 2011 Mar 8;19(3):305-16
22389665 - PLoS One. 2012;7(2):e30313
23293772 - Front Oncol. 2012 Dec 28;2:205
9438854 - Science. 1998 Jan 23;279(5350):577-80
20036637 - Biochim Biophys Acta. 2010 Mar;1798(3):605-15
21305617 - Glia. 2011 Aug;59(8):1155-68
18483355 - Clin Cancer Res. 2008 May 15;14(10):2895-9
15615512 - J Med Chem. 2004 Dec 30;47(27):6658-61
1306311 - Tohoku J Exp Med. 1992 Oct;168(2):265-9
17438529 - Oncogene. 2007 Sep 20;26(43):6289-96
19738123 - J Clin Oncol. 2009 Nov 1;27(31):5262-9
16846854 - Neuron. 2006 Jul 20;51(2):187-99
1646396 - Mol Cell Biol. 1991 Jul;11(7):3780-5
17875932 - Mol Cell Biol. 2007 Nov;27(22):7918-34
15928335 - J Clin Oncol. 2005 Aug 10;23(23):5357-64
17618441 - Acta Neuropathol. 2007 Aug;114(2):97-109
19813274 - Cancer. 2009 Dec 15;115(24):5761-70
17974913 - Genes Dev. 2007 Nov 1;21(21):2683-710
21931021 - J Clin Oncol. 2011 Oct 20;29(30):3999-4006
21251612 - Cancer Cell. 2011 Jan 18;19(1):11-5
18483217 - Genes Dev. 2008 May 15;22(10):1276-312
17328268 - J Neurosurg. 2006 Nov;105(5 Suppl):418-24
12086863 - Cancer Cell. 2002 Apr;1(3):269-77
20570930 - Clin Cancer Res. 2010 Jul 1;16(13):3368-77
16530701 - Cancer Cell. 2006 Mar;9(3):157-73
9850047 - Cancer Res. 1998 Dec 1;58(23):5275-9
16632515 - Biostatistics. 2007 Jan;8(1):118-27
18772396 - Science. 2008 Sep 26;321(5897):1807-12
12181311 - J Biol Chem. 2002 Oct 11;277(41):38627-34
16046538 - Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11011-6
19421151 - Oncogene. 2009 Jun 11;28(23):2266-75
21625383 - PLoS One. 2011;6(5):e20041
22588883 - Cancer Discov. 2012 May;2(5):458-71
18952581 - J Child Neurol. 2008 Oct;23(10):1149-59
20129251 - Cancer Cell. 2010 Jan 19;17(1):98-110
12907595 - Cancer Res. 2003 Aug 1;63(15):4305-9
22286061 - Nature. 2012 Feb 9;482(7384):226-31
18772890 - Nature. 2008 Oct 23;455(7216):1061-8
11485986 - Genes Dev. 2001 Aug 1;15(15):1913-25
22286216 - Nat Genet. 2012 Mar;44(3):251-3
21507933 - Cancer Res. 2011 Jun 15;71(12):4106-16
19847166 - Nature. 2009 Nov 5;462(7269):108-12
9739761 - Biochim Biophys Acta. 1998 Aug 19;1378(1):F79-113
15223958 - Am J Surg Pathol. 2004 Jul;28(7):889-94
20142589 - J Clin Oncol. 2010 Mar 10;28(8):1337-44
20197468 - Cancer Res. 2010 Mar 15;70(6):2548-57
20889717 - Genes Dev. 2010 Oct 1;24(19):2205-18
21393858 - J Clin Invest. 2011 Mar;121(3):905-17
22745105 - Clin Cancer Res. 2012 Aug 15;18(16):4375-84
23152448 - Genes Dev. 2012 Dec 1;26(23):2561-6
References_xml – reference: 22588883 - Cancer Discov. 2012 May;2(5):458-71
– reference: 17618441 - Acta Neuropathol. 2007 Aug;114(2):97-109
– reference: 12086863 - Cancer Cell. 2002 Apr;1(3):269-77
– reference: 20129251 - Cancer Cell. 2010 Jan 19;17(1):98-110
– reference: 22389665 - PLoS One. 2012;7(2):e30313
– reference: 22286216 - Nat Genet. 2012 Mar;44(3):251-3
– reference: 21625383 - PLoS One. 2011;6(5):e20041
– reference: 1646396 - Mol Cell Biol. 1991 Jul;11(7):3780-5
– reference: 18772890 - Nature. 2008 Oct 23;455(7216):1061-8
– reference: 15223958 - Am J Surg Pathol. 2004 Jul;28(7):889-94
– reference: 21305617 - Glia. 2011 Aug;59(8):1155-68
– reference: 8943348 - Mol Cell Biol. 1996 Dec;16(12):6926-36
– reference: 18171944 - J Neurosci. 2008 Jan 2;28(1):264-78
– reference: 9885210 - Blood. 1999 Jan 15;93(2):488-99
– reference: 18483355 - Clin Cancer Res. 2008 May 15;14(10):2895-9
– reference: 14967142 - Mol Cell. 2004 Feb 13;13(3):341-55
– reference: 9739761 - Biochim Biophys Acta. 1998 Aug 19;1378(1):F79-113
– reference: 19421151 - Oncogene. 2009 Jun 11;28(23):2266-75
– reference: 17328268 - J Neurosurg. 2006 Nov;105(5 Suppl):418-24
– reference: 11485986 - Genes Dev. 2001 Aug 1;15(15):1913-25
– reference: 18952581 - J Child Neurol. 2008 Oct;23(10):1149-59
– reference: 12907595 - Cancer Res. 2003 Aug 1;63(15):4305-9
– reference: 19738123 - J Clin Oncol. 2009 Nov 1;27(31):5262-9
– reference: 9850047 - Cancer Res. 1998 Dec 1;58(23):5275-9
– reference: 12181311 - J Biol Chem. 2002 Oct 11;277(41):38627-34
– reference: 16632515 - Biostatistics. 2007 Jan;8(1):118-27
– reference: 21397855 - Cancer Cell. 2011 Mar 8;19(3):305-16
– reference: 20889717 - Genes Dev. 2010 Oct 1;24(19):2205-18
– reference: 17875932 - Mol Cell Biol. 2007 Nov;27(22):7918-34
– reference: 16046538 - Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11011-6
– reference: 20479398 - J Clin Oncol. 2010 Jun 20;28(18):3061-8
– reference: 19813274 - Cancer. 2009 Dec 15;115(24):5761-70
– reference: 19847166 - Nature. 2009 Nov 5;462(7269):108-12
– reference: 22745105 - Clin Cancer Res. 2012 Aug 15;18(16):4375-84
– reference: 21931021 - J Clin Oncol. 2011 Oct 20;29(30):3999-4006
– reference: 17974913 - Genes Dev. 2007 Nov 1;21(21):2683-710
– reference: 21507933 - Cancer Res. 2011 Jun 15;71(12):4106-16
– reference: 22286061 - Nature. 2012 Feb 9;482(7384):226-31
– reference: 1306311 - Tohoku J Exp Med. 1992 Oct;168(2):265-9
– reference: 20570930 - Clin Cancer Res. 2010 Jul 1;16(13):3368-77
– reference: 16846854 - Neuron. 2006 Jul 20;51(2):187-99
– reference: 20142589 - J Clin Oncol. 2010 Mar 10;28(8):1337-44
– reference: 15615512 - J Med Chem. 2004 Dec 30;47(27):6658-61
– reference: 18772396 - Science. 2008 Sep 26;321(5897):1807-12
– reference: 18483217 - Genes Dev. 2008 May 15;22(10):1276-312
– reference: 23293772 - Front Oncol. 2012 Dec 28;2:205
– reference: 23152448 - Genes Dev. 2012 Dec 1;26(23):2561-6
– reference: 16530701 - Cancer Cell. 2006 Mar;9(3):157-73
– reference: 20197468 - Cancer Res. 2010 Mar 15;70(6):2548-57
– reference: 21251612 - Cancer Cell. 2011 Jan 18;19(1):11-5
– reference: 21393858 - J Clin Invest. 2011 Mar;121(3):905-17
– reference: 15928335 - J Clin Oncol. 2005 Aug 10;23(23):5357-64
– reference: 17438529 - Oncogene. 2007 Sep 20;26(43):6289-96
– reference: 20036637 - Biochim Biophys Acta. 2010 Mar;1798(3):605-15
– reference: 9438854 - Science. 1998 Jan 23;279(5350):577-80
SSID ssj0005105
Score 2.5257878
Snippet The outcome for children with high-grade gliomas (HGG) remains dismal, with a 2-year survival rate of only 10% to 30%. Diffuse intrinsic pontine glioma (DIPG)...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 6219
SubjectTerms Adolescent
Animals
Brain Neoplasms - genetics
Brain Neoplasms - pathology
Child
Child, Preschool
Gene Expression Profiling
Genome-Wide Association Study
Glioma - genetics
Glioma - pathology
Humans
Mice
Mutation
Receptor, Platelet-Derived Growth Factor alpha - genetics
Receptor, Platelet-Derived Growth Factor alpha - metabolism
Title Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas
URI https://www.ncbi.nlm.nih.gov/pubmed/23970477
https://www.proquest.com/docview/1443425387
Volume 73
WOSCitedRecordID wos000325796100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qRHzxfpk3IvgabZM0SZ90qNMHV4Yo7K1kaToKs53rtt_vSduxJ0HwJW-FcPrl5DuXfAehG6bgThxSTjSVHuGGC6LDQBKuRGi4hsjZVpL5bzKK1GAQ9puEW9m0VS59YuWok8K4HPkdEH8G-GJK3k--iZsa5aqrzQiNddRiQGUcquVgpRYe1C2M1aGWnAfNCx4_UO4BgyIBl_T2sRMRnxGIFPzfWWZ123R3_7vPPbTT8EzcqYGxj9ZsfoC2ek0l_RA9RMXCjnGRmwIglBncf3rpvnfw17yuzZc4y_FkOccDO1VjMprqxOLROHM9RUfos_v88fhKmmkKxADnm5HQSZWlEB8FAv5N6jGeDIdUWS9VTuQstUZoEwrLU-nbMKFcKPAFGvhUIplhjB6jjbzI7SnCvtA2TLVLKFOujdU2sFpIz0-sJ5QcttH10jYxoNWVIHRui3kZr6zTRie1geNJLasRU6BGHpfy7A9fn6Nt6uZSuNaS4AK1Ujir9hJtmsUsK6dXFQxgjfq9H07MuLA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+oncogenic+PDGFRA+mutations+in+pediatric+high-grade+gliomas&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Paugh%2C+Barbara+S&rft.au=Zhu%2C+Xiaoyan&rft.au=Qu%2C+Chunxu&rft.au=Endersby%2C+Raelene&rft.date=2013-10-15&rft.issn=1538-7445&rft.eissn=1538-7445&rft.volume=73&rft.issue=20&rft.spage=6219&rft_id=info:doi/10.1158%2F0008-5472.CAN-13-1491&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-7445&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-7445&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-7445&client=summon