Targeting solutions in Bayesian multi-objective optimization: sequential and batch versions

Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of expensive-to-evaluate functions, it is impossible and often non-informative to look for the entire set. As an end-user would typically prefer a certa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of mathematics and artificial intelligence Jg. 88; H. 1-3; S. 187 - 212
Hauptverfasser: Gaudrie, David, Le Riche, Rodolphe, Picheny, Victor, Enaux, Benoît, Herbert, Vincent
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.03.2020
Springer
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:1012-2443, 1573-7470
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of expensive-to-evaluate functions, it is impossible and often non-informative to look for the entire set. As an end-user would typically prefer a certain part of the objective space, we modify the Bayesian multi-objective optimization algorithm which uses Gaussian Processes and works by maximizing the Expected Hypervolume Improvement, to focus the search in the preferred region. The cumulated effects of the Gaussian Processes and the targeting strategy lead to a particularly efficient convergence to the desired part of the Pareto set. To take advantage of parallel computing, a multi-point extension of the targeting criterion is proposed and analyzed.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1012-2443
1573-7470
DOI:10.1007/s10472-019-09644-8