Parallel Stochastic Global Optimization Using Radial Basis Functions
We develop a parallel implementation of a stochastic radial basis function (RBF) algorithm for global optimization by Regis and Shoemaker [Regis, R. G., C. A. Shoemaker. 2007a. A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J. Comput. 19 (4) 497...
Saved in:
| Published in: | INFORMS journal on computing Vol. 21; no. 3; pp. 411 - 426 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Linthicum
INFORMS
22.06.2009
Institute for Operations Research and the Management Sciences |
| Subjects: | |
| ISSN: | 1091-9856, 1526-5528, 1091-9856 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We develop a parallel implementation of a stochastic radial basis function (RBF) algorithm for global optimization by Regis and Shoemaker [Regis, R. G., C. A. Shoemaker. 2007a. A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J. Comput. 19 (4) 497–509]. The proposed parallel algorithm is suitable for the global optimization of computationally expensive objective functions and does not require derivatives. Each iteration of the algorithm consists of building an RBF model to approximate the expensive function and using this model to select multiple points for simultaneous function evaluation on multiple processors. The function evaluation points are selected from a set of random candidate points according to two criteria: estimated function value based on the RBF model, and minimum distance from previously evaluated points and previously selected points within each iteration. We compare the performance of our parallel stochastic RBF algorithm against alternative parallel global optimization methods, including two multistart parallel finite-difference quasi-Newton methods, a multistart implementation of Asynchronous Parallel Pattern Search [Hough, P., T. G. Kolda, V. J. Torczon. 2001. Asynchronous parallel pattern search for nonlinear optimization. SIAM J. Sci. Comput. 23 (1) 134–156], a parallel implementation of Probabilistic Global Search Lausanne [Raphael, B., I. F. C. Smith. 2003. A direct stochastic algorithm for global search. Appl. Math. Comput. 146 729–758], a parallel evolutionary algorithm, and a deterministic parallel RBF algorithm by Regis and Shoemaker [Regis, R. G., C. A. Shoemaker. 2007c. Parallel radial basis function methods for the global optimization of expensive functions. Eur. J. Oper. Res. 182 (2) 514–535]. We report good results for our parallel stochastic RBF method when using one, four, or eight processors in comparison with the alternatives on 20 test problems and on 3 optimization problems involving groundwater bioremediation. |
|---|---|
| AbstractList | We develop a parallel implementation of a stochastic radial basis function (RBF) algorithm for global optimization by Regis and Shoemaker [Regis, R. G., C. A. Shoemaker. 2007a. A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J. Comput. 19(4) 497–509]. The proposed parallel algorithm is suitable for the global optimization of computationally expensive objective functions and does not require derivatives. Each iteration of the algorithm consists of building an RBF model to approximate the expensive function and using this model to select multiple points for simultaneous function evaluation on multiple processors. The function evaluation points are selected from a set of random candidate points according to two criteria: estimated function value based on the RBF model, and minimum distance from previously evaluated points and previously selected points within each iteration. We compare the performance of our parallel stochastic RBF algorithm against alternative parallel global optimization methods, including two multistart parallel finite-difference quasi-Newton methods, a multistart implementation of Asynchronous Parallel Pattern Search [Hough, P., T. G. Kolda, V. J. Torczon. 2001. Asynchronous parallel pattern search for nonlinear optimization. SIAM J. Sci. Comput. 23(1) 134–156], a parallel implementation of Probabilistic Global Search Lausanne [Raphael, B., I. F. C. Smith. 2003. A direct stochastic algorithm for global search. Appl. Math. Comput. 146 729–758], a parallel evolutionary algorithm, and a deterministic parallel RBF algorithm by Regis and Shoemaker [Regis, R. G., C. A. Shoemaker. 2007c. Parallel radial basis function methods for the global optimization of expensive functions. Eur. J. Oper. Res. 182(2) 514–535]. We report good results for our parallel stochastic RBF method when using one, four, or eight processors in comparison with the alternatives on 20 test problems and on 3 optimization problems involving groundwater bioremediation. We develop a parallel implementation of a stochastic radial basis function (RBF) algorithm for global optimization by Regis and Shoemaker [Regis, R. G., C. A. Shoemaker. 2007a. A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J. Comput. 19 (4) 497-509]. The proposed parallel algorithm is suitable for the global optimization of computationally expensive objective functions and does not require derivatives. Each iteration of the algorithm consists of building an RBF model to approximate the expensive function and using this model to select multiple points for simultaneous function evaluation on multiple processors. The function evaluation points are selected from a set of random candidate points according to two criteria: estimated function value based on the RBF model, and minimum distance from previously evaluated points and previously selected points within each iteration. We compare the performance of our parallel stochastic RBF algorithm against alternative parallel global optimization methods, including two multistart parallel finite-difference quasi-Newton methods, a multistart implementation of Asynchronous Parallel Pattern Search [Hough, P., T. G. Kolda, V. J. Torczon. 2001. Asynchronous parallel pattern search for nonlinear optimization. SIAM J. Sci. Comput. 23 (1) 134-156], a parallel implementation of Probabilistic Global Search Lausanne [Raphael, B., I. F. C. Smith. 2003. A direct stochastic algorithm for global search. Appl. Math. Comput. 146 729-758], a parallel evolutionary algorithm, and a deterministic parallel RBF algorithm by Regis and Shoemaker [Regis, R. G., C. A. Shoemaker. 2007c. Parallel radial basis function methods for the global optimization of expensive functions. Eur. J. Oper. Res. 182 (2) 514-535]. We report good results for our parallel stochastic RBF method when using one, four, or eight processors in comparison with the alternatives on 20 test problems and on 3 optimization problems involving groundwater bioremediation. The authors develop a parallel implementation of a stochastic radial basis function (RBF) algorithm for global optimization by Regis and Shoemaker. The proposed parallel algorithm is suitable for the global optimization of computationally expensive objective functions and does not require derivatives. Each iteration of the algorithm consists of building an RBF model to approximate the expensive function and using this model to select multiple points for simultaneous function evaluation on multiple processors. The function evaluation points are selected from a set of random candidate points according to two criteria: estimated function value based on the RBF model, and minimum distance from previously evaluated points and previously selected points within each iteration. They report good results for their parallel stochastic RBF method when using one, four, or eight processors in comparison with the alternatives on 20 test problems and on 3 optimization problems involving groundwater bioremediation. |
| Audience | Academic |
| Author | Shoemaker, Christine A Regis, Rommel G |
| Author_xml | – sequence: 1 fullname: Regis, Rommel G – sequence: 2 fullname: Shoemaker, Christine A |
| BookMark | eNqFkUtv1DAUhS1UJNrClnUELMngZxIvS6EFqVIR0LVlO3bGoyQefB1V8OtxmC4ADUKWbMv-zn2dM3Qyx9kh9JzgDaFd-ybsot0QLPEGMyoeoVMiaFMLQbuTcseS1LITzRN0BrDDGHPG5Sl690knPY5urL7kaLcacrDV9RiNHqvbfQ5T-KFziHN1B2Eeqs-6D-XnrYYA1dUy2_UPnqLHXo_gnj2c5-ju6v3Xyw_1ze31x8uLm9oK3OTaCKk7aaTuvRdG8JZ4bXzXCi5901jOe9nrpveCtcy0otVGcseMJU4bgo1l5-jFIe4-xW-Lg6x2cUlzSakoxoJySUmBXh6gQY9OhdnHnLSdAlh1QXEjmGw4LlR9hBrc7Mo4ylx9KM9_8JsjfFm9m4I9Knj9m8AsZXwOygZh2GYY9AJwNL5NESA5r_YpTDp9VwSr1V612qtWe9VqbxHwvwQ25F9WlcLC-G_ZQ99rC2mC_6d5deC3pe77kA69r8KVo0QxxQlhPwG8aMWG |
| CitedBy_id | crossref_primary_10_1016_j_jhydrol_2023_129414 crossref_primary_10_1016_j_advwatres_2013_01_003 crossref_primary_10_1016_j_agwat_2015_08_022 crossref_primary_10_1007_s10898_017_0599_5 crossref_primary_10_1016_j_envsoft_2015_12_008 crossref_primary_10_1080_10556788_2022_2091560 crossref_primary_10_1177_1477153517691331 crossref_primary_10_1145_3721296 crossref_primary_10_1029_2022WR032945 crossref_primary_10_1080_0305215X_2012_687731 crossref_primary_10_1016_j_jenvman_2022_114753 crossref_primary_10_1007_s10040_015_1272_z crossref_primary_10_1029_2011WR011527 crossref_primary_10_1007_s13253_012_0091_0 crossref_primary_10_1016_j_jconhyd_2024_104423 crossref_primary_10_1007_s11081_020_09556_1 crossref_primary_10_1007_s00366_012_0263_0 crossref_primary_10_1007_s10898_014_0184_0 crossref_primary_10_1016_j_advengsoft_2014_05_001 crossref_primary_10_2166_hydro_2020_036 crossref_primary_10_1016_j_envsoft_2014_09_023 crossref_primary_10_1080_0305215X_2023_2247369 crossref_primary_10_1007_s42979_023_02227_9 crossref_primary_10_1029_2022GL098893 crossref_primary_10_3390_a17090394 crossref_primary_10_1007_s10898_016_0407_7 crossref_primary_10_1016_j_future_2020_07_005 crossref_primary_10_1016_j_jobe_2025_112579 crossref_primary_10_1016_j_envsoft_2021_105237 crossref_primary_10_1029_2023WR034453 crossref_primary_10_1016_j_scitotenv_2022_159544 crossref_primary_10_1287_ijoc_2025_ed_v37_n4 crossref_primary_10_1016_j_jhydrol_2020_125752 crossref_primary_10_1016_j_envsoft_2011_09_010 crossref_primary_10_1007_s11081_015_9281_2 crossref_primary_10_1021_acs_iecr_6b04395 crossref_primary_10_3390_w15020253 crossref_primary_10_1016_j_conengprac_2018_06_004 crossref_primary_10_5194_gmd_11_3027_2018 crossref_primary_10_1002_2014WR016825 crossref_primary_10_1016_j_envsoft_2020_104910 crossref_primary_10_1007_s11081_020_09526_7 crossref_primary_10_1016_j_ijggc_2016_01_009 crossref_primary_10_3390_math10162906 crossref_primary_10_1080_02331934_2016_1266627 crossref_primary_10_1007_s10898_020_00937_5 crossref_primary_10_1007_s00158_016_1432_3 crossref_primary_10_1007_s11265_020_01540_3 crossref_primary_10_1029_2022WR033673 crossref_primary_10_1016_j_mineng_2023_108081 crossref_primary_10_5004_dwt_2017_20381 crossref_primary_10_1007_s10898_015_0270_y |
| Cites_doi | 10.1007/BF01197708 10.1023/A:1011255519438 10.1093/oso/9780198534396.003.0003 10.1016/S0096-3003(02)00629-X 10.1007/BF01096734 10.1007/s10107-003-0430-6 10.1287/ijoc.1060.0182 10.1137/S1052623401398107 10.1007/978-1-4615-0337-8 10.1007/BFb0026589 10.1137/S003614450242889 10.1007/s10898-004-0570-0 10.1007/s101070100290 10.1029/2005WR004134 10.1016/S0378-3758(00)00105-1 10.1017/CBO9780511543241 10.1023/A:1008306431147 10.1137/070691814 10.1145/355934.355936 10.1137/S1052623493250780 10.1007/BF02614326 10.2514/2.1234 10.1287/ijoc.5.1.2 10.1061/(ASCE)0733-9496(1999)125:1(54) 10.1017/S0001924000066045 10.1214/ss/1177012413 10.1007/s00158-004-0397-9 10.1002/9781119115151 10.1137/S1064827599365823 10.1007/s10898-006-9040-1 10.1016/S0169-7161(96)13011-X 10.1016/j.ejor.2006.08.040 10.1287/ijoc.1060.0175 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2009 Institute for Operations Research and the Management Sciences Copyright Institute for Operations Research and the Management Sciences Summer 2009 |
| Copyright_xml | – notice: COPYRIGHT 2009 Institute for Operations Research and the Management Sciences – notice: Copyright Institute for Operations Research and the Management Sciences Summer 2009 |
| DBID | AAYXX CITATION N95 3V. 7WY 7WZ 7XB 87Z 8AL 8AO 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PYYUZ Q9U |
| DOI | 10.1287/ijoc.1090.0325 |
| DatabaseName | CrossRef Gale Business: Insights ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1526-5528 1091-9856 |
| EndPage | 426 |
| ExternalDocumentID | 1833826561 A206539640 10_1287_ijoc_1090_0325 ijoc.1090.0325 joc_21_3_411 |
| Genre | Research Article Feature |
| GroupedDBID | 1AW 29I 3V. 4.4 4S 5GY 7WY 8AL 8AO 8FE 8FG 8FL 8VB AAPBV ABDBF ABFLS ABPTK ABUWG ACNCT ADCOW AEILP AENEX AFKRA AKVCP ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BENPR BEZIV BGLVJ BPHCQ CS3 DU5 DWQXO EAD EAP EBA EBE EBR EBS EBU ECS EDO EHE EJD EMI EMK EPL EST ESX F5P FRNLG GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH HCIFZ I-F IAO ICD IEA IGS IL9 IOF ITC K6 K60 K6V K7- M0C M0N MV1 N95 NIEAY P2P P62 PQEST PQQKQ PQUKI PRINS PROAC QWB RPU TH9 TN5 TUS XI7 Y99 ZL0 ZY4 ACYGS XFK .4S .DC 18M AADHG AAYXX ABDNZ ACGFO AEGXH AEMOZ AFFHD AHQJS AIAGR BAAKF CCPQU CITATION EBO K1G K6~ PHGZM PHGZT PQBIZ PQBZA PQGLB XOL 7XB 8FK JQ2 L.- PKEHL Q9U |
| ID | FETCH-LOGICAL-c506t-b59a89b9adff5b5471fabf87549f66c44d9da6df5373b757ab94e3bc1eab10bc3 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 58 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000268558800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-9856 |
| IngestDate | Fri Jul 25 23:54:04 EDT 2025 Tue Nov 11 11:17:48 EST 2025 Sat Nov 29 12:07:07 EST 2025 Tue Nov 04 18:44:40 EST 2025 Sat Nov 29 08:25:53 EST 2025 Sat Nov 29 03:32:09 EST 2025 Tue Nov 18 21:46:33 EST 2025 Wed Jan 06 02:47:43 EST 2021 Fri Jan 15 03:35:52 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c506t-b59a89b9adff5b5471fabf87549f66c44d9da6df5373b757ab94e3bc1eab10bc3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| PQID | 200524921 |
| PQPubID | 46392 |
| PageCount | 16 |
| ParticipantIDs | gale_infotracmisc_A206539640 informs_primary_10_1287_ijoc_1090_0325 proquest_journals_200524921 highwire_informs_joc_21_3_411 gale_infotracgeneralonefile_A206539640 crossref_primary_10_1287_ijoc_1090_0325 gale_infotracacademiconefile_A206539640 gale_businessinsightsgauss_A206539640 crossref_citationtrail_10_1287_ijoc_1090_0325 |
| ProviderPackageCode | Y99 RPU NIEAY |
| PublicationCentury | 2000 |
| PublicationDate | 20090622 |
| PublicationDateYYYYMMDD | 2009-06-22 |
| PublicationDate_xml | – month: 06 year: 2009 text: 20090622 day: 22 |
| PublicationDecade | 2000 |
| PublicationPlace | Linthicum |
| PublicationPlace_xml | – name: Linthicum |
| PublicationTitle | INFORMS journal on computing |
| PublicationYear | 2009 |
| Publisher | INFORMS Institute for Operations Research and the Management Sciences |
| Publisher_xml | – name: INFORMS – name: Institute for Operations Research and the Management Sciences |
| References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B10 B32 B11 B33 B12 B34 B13 B35 B14 B36 B15 B37 B16 B38 B17 B39 B18 B19 B1 B2 B3 B4 B5 B6 B7 B8 B9 Giunta A. A. (B9) 1997; 101 Myers R. H. (B21) 1995 Powell M. J. D. (B23) 1992 Dixon L. C. W. (B8) 1978; 2 MathWorks (B18) 2008 Box G. E. P. (B4) 1987 Numerical Algorithms Group (B22) 2005 |
| References_xml | – ident: B12 – ident: B9 – ident: B35 – ident: B14 – ident: B10 – ident: B3 – ident: B20 – ident: B1 – ident: B27 – ident: B7 – ident: B5 – ident: B29 – ident: B25 – ident: B23 – ident: B21 – ident: B18 – ident: B16 – ident: B31 – ident: B33 – ident: B37 – ident: B39 – ident: B8 – ident: B36 – ident: B11 – ident: B13 – ident: B2 – ident: B26 – ident: B4 – ident: B28 – ident: B6 – ident: B24 – ident: B22 – ident: B17 – ident: B32 – ident: B15 – ident: B30 – ident: B34 – ident: B19 – ident: B38 – ident: B3 doi: 10.1007/BF01197708 – ident: B11 doi: 10.1023/A:1011255519438 – start-page: 105 volume-title: Advances in Numerical Analysis, Volume 2: Wavelets, Subdivision Algorithms and Radial Basis Functions year: 1992 ident: B23 doi: 10.1093/oso/9780198534396.003.0003 – ident: B26 doi: 10.1016/S0096-3003(02)00629-X – volume-title: NAG C Library Manual, Mark 8 year: 2005 ident: B22 – ident: B32 doi: 10.1007/BF01096734 – volume-title: Matlab Compiler: User's Guide, Version 4 year: 2008 ident: B18 – ident: B25 doi: 10.1007/s10107-003-0430-6 – ident: B28 doi: 10.1287/ijoc.1060.0182 – ident: B15 doi: 10.1137/S1052623401398107 – ident: B17 doi: 10.1007/978-1-4615-0337-8 – ident: B10 doi: 10.1007/BFb0026589 – volume-title: Response Surface Methodology: Process and Product Optimization Using Designed Experiments year: 1995 ident: B21 – ident: B16 doi: 10.1137/S003614450242889 – ident: B27 doi: 10.1007/s10898-004-0570-0 – ident: B24 doi: 10.1007/s101070100290 – ident: B20 doi: 10.1029/2005WR004134 – ident: B38 doi: 10.1016/S0378-3758(00)00105-1 – ident: B5 doi: 10.1017/CBO9780511543241 – ident: B13 doi: 10.1023/A:1008306431147 – ident: B37 doi: 10.1137/070691814 – ident: B19 doi: 10.1145/355934.355936 – ident: B35 doi: 10.1137/S1052623493250780 – ident: B6 doi: 10.1007/BF02614326 – ident: B33 doi: 10.2514/2.1234 – ident: B1 doi: 10.1287/ijoc.5.1.2 – ident: B39 doi: 10.1061/(ASCE)0733-9496(1999)125:1(54) – volume-title: Empirical Model-Building and Response Surfaces year: 1987 ident: B4 – volume: 101 start-page: 347 issue: 1008 year: 1997 ident: B9 publication-title: Aeronautical J. doi: 10.1017/S0001924000066045 – ident: B31 doi: 10.1214/ss/1177012413 – volume: 2 start-page: 1 volume-title: Towards Global Optimization year: 1978 ident: B8 – ident: B34 doi: 10.1007/s00158-004-0397-9 – ident: B7 doi: 10.1002/9781119115151 – ident: B12 doi: 10.1137/S1064827599365823 – ident: B29 doi: 10.1007/s10898-006-9040-1 – ident: B14 doi: 10.1016/S0169-7161(96)13011-X – ident: B30 doi: 10.1016/j.ejor.2006.08.040 – ident: B36 doi: 10.1287/ijoc.1060.0175 |
| SSID | ssj0004349 |
| Score | 2.1175678 |
| Snippet | We develop a parallel implementation of a stochastic radial basis function (RBF) algorithm for global optimization by Regis and Shoemaker [Regis, R. G., C. A.... The authors develop a parallel implementation of a stochastic radial basis function (RBF) algorithm for global optimization by Regis and Shoemaker. The... |
| SourceID | proquest gale crossref informs highwire |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 411 |
| SubjectTerms | Algorithms Bioremediation expensive function global optimization Groundwater groundwater bioremediation Mathematical optimization Methods Multiprocessing Optimization Optimization algorithms parallel optimization Properties radial basis function stochastic algorithm Stochastic models Stochastic programming Studies surrogate model Water, Underground |
| Title | Parallel Stochastic Global Optimization Using Radial Basis Functions |
| URI | http://joc.journal.informs.org/cgi/content/abstract/21/3/411 https://www.proquest.com/docview/200524921 |
| Volume | 21 |
| WOSCitedRecordID | wos000268558800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1526-5528 dateEnd: 20091031 omitProxy: false ssIdentifier: ssj0004349 issn: 1091-9856 databaseCode: M0C dateStart: 19990401 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1526-5528 dateEnd: 20091031 omitProxy: false ssIdentifier: ssj0004349 issn: 1091-9856 databaseCode: P5Z dateStart: 19990401 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1526-5528 dateEnd: 20091031 omitProxy: false ssIdentifier: ssj0004349 issn: 1091-9856 databaseCode: K7- dateStart: 19990401 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest ABI/INFORM Collection customDbUrl: eissn: 1526-5528 dateEnd: 20091031 omitProxy: false ssIdentifier: ssj0004349 issn: 1091-9856 databaseCode: 7WY dateStart: 19990401 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1526-5528 dateEnd: 20091031 omitProxy: false ssIdentifier: ssj0004349 issn: 1091-9856 databaseCode: BENPR dateStart: 19990401 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoywEObSlU9LXyAcrJNLGdOD6hvlZIiGVVQBQulu3EZdF2t11v-f14HKd0xevAJVLiUeJ4xuMZP74PoWc5NUICawA1riZcVCXR2mVENrZhIR6XrNKRbEIMBtX5uRymvTk-bavsfGJ01PXUwhz5QUQI4pLmr66uCZBGweJqYtBYQisQ2MCOvrfZ8c9jkSxGvwB9SWRVlAmzMeQIB6NvUwtIStnLjAFL9p0xqfPMHVxwPOYEAaT_xV3HMai_9p-1X0erKfjEh621PEL3mskGWuuIHXDq5xvo4R2UwsfoZKhnwLgyxu_nU_tVA7IzbrkC8LvgcS7TUU4ctx_gM0A7GOMj7Uce98OwGS37CfrYP_1w_Jok8gVii6ycE1NIXUkjde1cYYowhjltXMhuuHRlaTmvZa3L2hVMMCMKoY3kDTM2b7TJM2PZJlqeTCfNU4QzB4T2VFMqDK8aK0MKWtHa1jWg4pp8C5Gu-ZVNyORAkDFWkKEEdSlQF6yVZwrUtYVe3MpftZgcf5R8DtpUidAzXDxMefgLfeO9OqQRmLfkWXhjlANFhy9bnc4mhPoDPNaC5P6C5EULDv47wd0FwdBr7ULxXmdgKpmXgqrTXDHF89Am-93jf_3iTmdxKrkfr27NbfuvpTvoQbs4VhJKd9HyfHbT7KH79vt85Gc9tCQ-fe6hlaPTwfAs3L0RpBc7WLgOiy8_ALOqKlQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQIOFAqI0hZ8oOVkmtjOwweECmXVastSQZF6M7bjlEXLbllvQfwo_iMexy5d8Tr1wCWHZJSH_c147Hi-D6FHOdWVANUAqtuG8KouiVJtRoQ1lvl8XLBaBbGJajCoj47EwQL6nmphYFtliokhUDcTA2vkW4EhiAuaPzv5TEA0Cn6uJgWNDhV9--2rn7G5p3s7vns3KO29PHyxS6KoADFFVs6ILoSqhRaqadtCFz42t0q3Pmvnoi1Lw3kjGlU2bcEqpquiUlpwy7TJrdJ5pg3z972ELnNWV-BW_Yr8LMNkIdsGqk0i6qKMHJF-TrI1_DgxwNyUPckYqHKfGwPTSJDoiUNZFSSs7pfhIYx5vaX_rLVuohsxucbbnTfcQgt2vIyWknAFjnFsGV0_x8J4G-0cqCkoyozw29nEfFDAXI07LQT82kfUT7FUFYftFfgNsDmM8HPlhg73fFoQPPcOenchX3YXLY4nY3sP4az1QTKnitJK89oa4afYNW1M0wDrr85XEEndLU1kXgcBkJGEGZiHhwR4wF6ATAI8VtDjM_uTjnPkj5YbgB4ZBUv9wcGSjjtWp87JbRqIh0ue-TsGOwCWf7JRsfbCvz_Qf81Zbs5ZHnfk578zXJsz9FHJzF1eT4CWEc4SXp3mkkme-zbZTKf_9YmrCeEyhlcnz-B9_69XH6Kru4ev9uX-3qC_iq51PwJLQukaWpxNT-06umK-zIZu-iA4MkbvL9oXfgD9wYX8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKQQgOFAqI0hZ8oOVksut9-oBQIURURSXiIVW9GNu7LkEhKXEK4qfx75jx2qURr1MPXHLYHW328c14Znfm-wh5kHJdCVQN4No2LK_qkillEyZa02aQj4usVl5sotrfrw8OxHCJfI-zMNhWGWOiD9TN1OA78p5nCMoFT3s2dEUM-4Mnx58ZCkjhh9aoptEhZK_99hWqN_d4tw-PeovzwfO3z16wIDDATJGUc6YLoWqhhWqsLXQBcdoqbSGDz4UtS5PnjWhU2dgiqzJdFZXSIm8zbdJW6TTRJoPjXiAXKygxsZtwWBz-HMnMfOaNtJtM1EUZ-CKhPumNPk4Nsjglj5IMFbrPrIdxVYhUxX7ECpNX98tS4de_wcp_fOeuk2sh6aY7nZfcIEvtZJWsREELGuLbKrl6hp3xJukP1QyVZsb0zXxqPihktKadRgJ9BZH2Uxhhpb7tgr5GlocxfarcyNEBpAveo2-Rd-dyZbfJ8mQ6ae8QmlgInilXnFc6r1sjoPSueWOaBtmAdbpGWHz00gRGdhQGGUuszAAqEqGCPQKJRKiskYen9scdF8kfLbcQSTIImcKPw1c97kidOCd3uCckLvMEjujtEGTwz0aFmQw4f6QFW7DcXrA86kjRf2e4sWAI0cos7N6M4JYB2hJPnacyk3kK92Q7bv7XJa5HtMsQdp08hfrdv-69Ty6DC8iXu_t76-RK932wZJxvkOX57KTdJJfMl_nIze55n6bk_Xm7wg8L448g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+stochastic+global+optimization+using+radial+basis+functions&rft.jtitle=INFORMS+journal+on+computing&rft.au=Regis%2C+Rommel+G&rft.au=Shoemaker%2C+Christine+A&rft.date=2009-06-22&rft.pub=Institute+for+Operations+Research+and+the+Management+Sciences&rft.issn=1091-9856&rft.volume=21&rft.issue=3&rft.spage=411&rft_id=info:doi/10.1287%2Fijoc.1090.0325&rft.externalDocID=A206539640 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-9856&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-9856&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-9856&client=summon |