A combined splitting—cross entropy method for rare-event probability estimation of queueing networks
We present a fast algorithm for the efficient estimation of rare-event (buffer overflow) probabilities in queueing networks. Our algorithm presents a combined version of two well known methods: the splitting and the cross-entropy (CE) method. We call the new method SPLITCE. In this method, the optim...
Uloženo v:
| Vydáno v: | Annals of operations research Ročník 189; číslo 1; s. 167 - 185 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
01.09.2011
Springer Science + Business Media Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0254-5330, 1572-9338 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present a fast algorithm for the efficient estimation of rare-event (buffer overflow) probabilities in queueing networks. Our algorithm presents a combined version of two well known methods: the
splitting
and the
cross-entropy
(CE) method. We call the new method SPLITCE. In this method, the optimal change of measure (importance sampling) is determined adaptively by using the CE method. Simulation results for a single queue and queueing networks of the ATM-type are presented. Our numerical results demonstrate higher efficiency of the proposed method as compared to the original splitting and CE methods. In particular, for a single server queue example we demonstrate numerically that both the splitting and the SPLITCE methods can handle our buffer overflow example problems with both light and heavy tails efficiently. Further research must show the full potential of the proposed method. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0254-5330 1572-9338 |
| DOI: | 10.1007/s10479-009-0608-2 |