Hyperglycemia Induces Trained Immunity in Macrophages and Their Precursors and Promotes Atherosclerosis
Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics. Bone marrow-derived macrophages from control mice and mice with diabetes were grown in...
Saved in:
| Published in: | Circulation (New York, N.Y.) Vol. 144; no. 12; p. 961 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
21.09.2021
|
| Subjects: | |
| ISSN: | 1524-4539, 1524-4539 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics.
Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic)
mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection.
In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic)
mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype.
Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy. |
|---|---|
| AbstractList | Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics.BACKGROUNDCardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics.Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) Ldlr-/- mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection.METHODSBone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) Ldlr-/- mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection.In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) Ldlr-/- mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype.RESULTSIn macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) Ldlr-/- mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype.Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy.CONCLUSIONSHyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy. Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics. Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection. In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype. Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy. |
| Author | Netea, Mihai G Carnicer, Ricardo Choudhury, Robin P Bock, Christoph Cahill, Thomas J Channon, Keith M Crabtree, Mark J Gallart-Ayala, Héctor Riksen, Niels P Bailey, Jade Edgar, Laurienne Alkhalil, Mohammad Akbar, Naveed Rendeiro, André F Ziberna, Klemen Braithwaite, Adam T Lemieux, Madeleine E Krausgruber, Thomas Udalova, Irina A Arya, Ritu Laurencikiene, Jurga Rydén, Mikael Chai, Joshua T Wheelock, Craig E Corbin, Alastair L Khoyratty, Tariq E |
| Author_xml | – sequence: 1 givenname: Laurienne orcidid: 0000-0001-7893-2324 surname: Edgar fullname: Edgar, Laurienne organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 2 givenname: Naveed orcidid: 0000-0003-4620-6373 surname: Akbar fullname: Akbar, Naveed organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 3 givenname: Adam T orcidid: 0000-0003-3228-2172 surname: Braithwaite fullname: Braithwaite, Adam T organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 4 givenname: Thomas orcidid: 0000-0002-1374-0329 surname: Krausgruber fullname: Krausgruber, Thomas organization: CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.) – sequence: 5 givenname: Héctor surname: Gallart-Ayala fullname: Gallart-Ayala, Héctor organization: Department of Respiratory Medicine and Allergy (H.G.-A., C.E.W.), Karolinska University Hospital, Stockholm, Sweden – sequence: 6 givenname: Jade surname: Bailey fullname: Bailey, Jade organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 7 givenname: Alastair L orcidid: 0000-0001-7308-9286 surname: Corbin fullname: Corbin, Alastair L organization: The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.) – sequence: 8 givenname: Tariq E orcidid: 0000-0001-5911-0026 surname: Khoyratty fullname: Khoyratty, Tariq E organization: The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.) – sequence: 9 givenname: Joshua T surname: Chai fullname: Chai, Joshua T organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 10 givenname: Mohammad orcidid: 0000-0002-3088-8878 surname: Alkhalil fullname: Alkhalil, Mohammad organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 11 givenname: André F orcidid: 0000-0001-9362-5373 surname: Rendeiro fullname: Rendeiro, André F organization: CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.) – sequence: 12 givenname: Klemen orcidid: 0000-0003-3819-3779 surname: Ziberna fullname: Ziberna, Klemen organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 13 givenname: Ritu surname: Arya fullname: Arya, Ritu organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 14 givenname: Thomas J surname: Cahill fullname: Cahill, Thomas J organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 15 givenname: Christoph orcidid: 0000-0001-6091-3088 surname: Bock fullname: Bock, Christoph organization: Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (C.B.) – sequence: 16 givenname: Jurga surname: Laurencikiene fullname: Laurencikiene, Jurga organization: Department of Medicine (H7) (J.L., M.R.), Karolinska University Hospital, Stockholm, Sweden – sequence: 17 givenname: Mark J orcidid: 0000-0003-3298-2697 surname: Crabtree fullname: Crabtree, Mark J organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 18 givenname: Madeleine E surname: Lemieux fullname: Lemieux, Madeleine E organization: Bioinfo, Plantagenet, ON, Canada (M.E.L.) – sequence: 19 givenname: Niels P orcidid: 0000-0001-9197-8124 surname: Riksen fullname: Riksen, Niels P organization: Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands (N.P.R.., M.G.N.) – sequence: 20 givenname: Mihai G surname: Netea fullname: Netea, Mihai G organization: Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany (M.G.N.) – sequence: 21 givenname: Craig E surname: Wheelock fullname: Wheelock, Craig E organization: Department of Respiratory Medicine and Allergy (H.G.-A., C.E.W.), Karolinska University Hospital, Stockholm, Sweden – sequence: 22 givenname: Keith M surname: Channon fullname: Channon, Keith M organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 23 givenname: Mikael surname: Rydén fullname: Rydén, Mikael organization: Department of Medicine (H7) (J.L., M.R.), Karolinska University Hospital, Stockholm, Sweden – sequence: 24 givenname: Irina A surname: Udalova fullname: Udalova, Irina A organization: The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.) – sequence: 25 givenname: Ricardo orcidid: 0000-0002-7440-2964 surname: Carnicer fullname: Carnicer, Ricardo organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) – sequence: 26 givenname: Robin P orcidid: 0000-0002-8046-1688 surname: Choudhury fullname: Choudhury, Robin P organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34255973$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkF9LwzAUxYNM3B_9ClLffOlskqZdHktRV5huSPdc0uRmq7RNTdaHfns7NkEunHu558eBe-do0poWEHrCwRLjCL-k2Ve63yR5tv1M1skSk2AZhNFYN2iGGQn9kFE--TdP0dy57yAIIhqzOzSlIWGMx3SGDuuhA3uoBwlNJbysVb0E5-VWVC0oL2uavq1Og1e13oeQ1nRHcRh90SovP0JlvZ0F2Vtn7GW5s6Yxp5FITkewxsn6rJW7R7da1A4ern2B9m-vebr2N9v3LE02vmRBFPkhVxrzqKSax1gDlRJrfrZWZcwBSKyYxkJpIhSNSwxSl4IyxVcBsJAoTBbo-ZLbWfPTgzsVTeUk1LVowfSuGO_GbIUZi0b08Yr2ZQOq6GzVCDsUf88hv7EibUY |
| CitedBy_id | crossref_primary_10_3389_fneur_2023_1249535 crossref_primary_10_1016_j_joca_2025_05_012 crossref_primary_10_1016_j_diabres_2023_110869 crossref_primary_10_1016_j_kint_2024_10_031 crossref_primary_10_1093_jimmun_vkaf135 crossref_primary_10_1016_j_intimp_2024_111558 crossref_primary_10_1007_s00018_023_04981_8 crossref_primary_10_1186_s40001_025_02635_y crossref_primary_10_1093_cvr_cvac058 crossref_primary_10_3390_ijms252010979 crossref_primary_10_3389_fimmu_2025_1572796 crossref_primary_10_3389_fendo_2022_983723 crossref_primary_10_1002_advs_202500610 crossref_primary_10_1161_ATVBAHA_122_317163 crossref_primary_10_1038_s41577_025_01132_x crossref_primary_10_1016_j_placenta_2025_09_015 crossref_primary_10_1161_ATVBAHA_121_317204 crossref_primary_10_1007_s12265_023_10470_x crossref_primary_10_1016_j_jacbts_2025_101319 crossref_primary_10_1016_j_xcrm_2025_102288 crossref_primary_10_2147_ITT_S508042 crossref_primary_10_7554_eLife_81480 crossref_primary_10_1016_j_jdiacomp_2023_108469 crossref_primary_10_3390_ijms25042312 crossref_primary_10_1001_jamapediatrics_2023_2029 crossref_primary_10_1016_j_yjmcc_2021_10_007 crossref_primary_10_1093_eurheartj_ehad787 crossref_primary_10_1016_j_ijcard_2025_132988 crossref_primary_10_1016_j_arr_2022_101836 crossref_primary_10_1016_j_cell_2022_04_004 crossref_primary_10_1111_bph_16472 crossref_primary_10_1038_s41569_021_00606_4 crossref_primary_10_3389_fimmu_2022_984859 crossref_primary_10_1016_j_ejphar_2023_175787 crossref_primary_10_1016_j_yjmcc_2023_10_011 crossref_primary_10_1111_jdi_13734 crossref_primary_10_3389_fimmu_2023_1183066 crossref_primary_10_3389_fimmu_2024_1483402 crossref_primary_10_1016_j_abb_2022_109430 crossref_primary_10_1016_j_dsx_2024_102968 crossref_primary_10_1186_s12974_024_03136_1 crossref_primary_10_1016_j_yexcr_2024_114052 crossref_primary_10_1016_j_isci_2024_110767 crossref_primary_10_1073_pnas_2424529122 crossref_primary_10_3389_fimmu_2024_1342837 crossref_primary_10_7554_eLife_87316_3 crossref_primary_10_1016_j_coi_2025_102630 crossref_primary_10_1016_j_tips_2024_12_003 crossref_primary_10_1093_jleuko_qiad118 crossref_primary_10_1016_j_fbio_2024_103755 crossref_primary_10_3390_biomedicines11123250 crossref_primary_10_1002_brb3_70404 crossref_primary_10_1016_j_jaci_2024_06_005 crossref_primary_10_3389_fendo_2025_1533620 crossref_primary_10_1007_s11886_024_02167_7 crossref_primary_10_1093_cvr_cvac114 crossref_primary_10_1016_j_jare_2025_09_029 crossref_primary_10_3390_cells13191662 crossref_primary_10_7554_eLife_106339 crossref_primary_10_3389_fimmu_2023_1130662 crossref_primary_10_1016_j_phrs_2024_107505 crossref_primary_10_3390_cells14141054 crossref_primary_10_3389_fendo_2025_1542208 crossref_primary_10_1002_agm2_12189 crossref_primary_10_1038_s41569_021_00668_4 crossref_primary_10_1038_s41569_023_00894_y crossref_primary_10_1002_advs_202505058 crossref_primary_10_1097_MOL_0000000000001004 crossref_primary_10_1002_advs_202508205 crossref_primary_10_1016_j_isci_2024_111594 crossref_primary_10_1007_s12013_024_01269_x crossref_primary_10_1016_j_ejphar_2024_176586 crossref_primary_10_1016_j_isci_2023_107759 crossref_primary_10_1093_cvr_cvad030 crossref_primary_10_1096_fj_202302003R crossref_primary_10_1038_s41574_025_01171_3 crossref_primary_10_1002_smll_202402673 crossref_primary_10_1016_j_jpha_2023_11_016 crossref_primary_10_1038_s41577_024_00998_7 crossref_primary_10_3389_fimmu_2025_1472197 crossref_primary_10_3390_antiox11122382 crossref_primary_10_1073_pnas_2400413121 crossref_primary_10_1016_j_procbio_2024_09_011 crossref_primary_10_3390_biomedicines11030766 crossref_primary_10_1016_j_cej_2023_143173 crossref_primary_10_1038_s44161_024_00473_5 crossref_primary_10_1096_fj_202500802R crossref_primary_10_1172_JCI192469 crossref_primary_10_3389_fendo_2022_981100 crossref_primary_10_1038_s41581_022_00621_9 crossref_primary_10_3390_ncrna9030030 crossref_primary_10_1155_2024_7178920 crossref_primary_10_1177_17539447231215213 crossref_primary_10_3390_cancers15020498 crossref_primary_10_3390_biomedicines10010178 crossref_primary_10_1089_wound_2023_0149 crossref_primary_10_1093_jleuko_qiaf043 crossref_primary_10_1186_s40001_024_01739_1 crossref_primary_10_1016_j_heliyon_2023_e15692 crossref_primary_10_31083_j_fbl2901026 crossref_primary_10_1096_fj_202301078R crossref_primary_10_12688_f1000research_131867_1 crossref_primary_10_3389_fimmu_2025_1580369 crossref_primary_10_3389_fendo_2025_1665292 crossref_primary_10_1016_j_jacbts_2025_04_014 crossref_primary_10_15252_embr_202357164 crossref_primary_10_7554_eLife_87316 crossref_primary_10_1016_j_ajcnut_2024_04_029 crossref_primary_10_1080_1744666X_2022_2120470 crossref_primary_10_1093_cvr_cvae142 crossref_primary_10_1152_ajpcell_00153_2025 crossref_primary_10_1042_BST20220441 crossref_primary_10_3390_jcm12113665 crossref_primary_10_1016_j_celrep_2024_114094 crossref_primary_10_1111_myc_13682 crossref_primary_10_3389_fendo_2022_919223 crossref_primary_10_2147_IJN_S514000 crossref_primary_10_1186_s12933_024_02273_4 crossref_primary_10_3390_cells14171349 crossref_primary_10_1016_j_exphem_2025_104863 crossref_primary_10_3389_fimmu_2024_1330461 crossref_primary_10_1002_wsbm_1543 crossref_primary_10_3389_fimmu_2025_1613602 crossref_primary_10_1016_j_phrs_2025_107588 crossref_primary_10_1016_j_biomaterials_2025_123563 crossref_primary_10_1016_j_phymed_2023_154667 crossref_primary_10_1016_j_jep_2024_117750 crossref_primary_10_1186_s12931_023_02663_4 crossref_primary_10_1016_j_ijbiomac_2023_128809 crossref_primary_10_1096_fj_202401452R crossref_primary_10_1089_ten_tec_2022_0066 crossref_primary_10_1161_CIRCULATIONAHA_123_065506 crossref_primary_10_3390_ijms251910240 crossref_primary_10_1161_ATVBAHA_123_318956 crossref_primary_10_1016_j_tem_2023_10_011 crossref_primary_10_1016_j_ijcrp_2022_200143 crossref_primary_10_1016_j_bioactmat_2025_03_020 crossref_primary_10_1016_j_jconrel_2025_113730 crossref_primary_10_1016_j_heliyon_2024_e26904 crossref_primary_10_1128_iai_00472_24 crossref_primary_10_1152_ajpendo_00071_2025 crossref_primary_10_1038_s41392_024_01755_x crossref_primary_10_1016_j_cell_2025_03_048 crossref_primary_10_1172_JCI169730 crossref_primary_10_1210_endocr_bqac061 crossref_primary_10_1007_s11906_022_01222_4 crossref_primary_10_1002_mnfr_202300380 crossref_primary_10_1016_j_ijbiomac_2024_134830 crossref_primary_10_3390_ijms26052196 crossref_primary_10_1038_s41569_024_01115_w crossref_primary_10_3390_ijms23042234 crossref_primary_10_1186_s12933_024_02195_1 crossref_primary_10_1186_s12979_023_00377_1 crossref_primary_10_1111_imm_13706 crossref_primary_10_3389_fnut_2024_1346706 crossref_primary_10_1007_s00408_025_00834_2 crossref_primary_10_1016_j_cej_2024_154433 crossref_primary_10_1016_j_phymed_2025_157194 crossref_primary_10_1016_j_cca_2022_09_017 crossref_primary_10_1007_s13340_024_00741_6 crossref_primary_10_3389_fnagi_2021_821336 crossref_primary_10_1111_acel_13863 crossref_primary_10_1161_STROKEAHA_125_049900 crossref_primary_10_3390_life13112128 crossref_primary_10_3389_fendo_2025_1549945 crossref_primary_10_1002_advs_202503192 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1161/CIRCULATIONAHA.120.046464 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1524-4539 |
| ExternalDocumentID | 34255973 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: British Heart Foundation grantid: PG/18/53/33895 – fundername: Medical Research Council grantid: G0900747 91070 – fundername: British Heart Foundation grantid: CH/16/1/32013 – fundername: British Heart Foundation grantid: FS/14/56/31049 – fundername: British Heart Foundation grantid: RE/13/1/30181 – fundername: Wellcome Trust grantid: 090532/Z/09/Z |
| GroupedDBID | --- .-D .3C .XZ .Z2 01R 0R~ 0ZK 18M 1J1 29B 2FS 2WC 354 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ AAAAV AAAXR AAFWJ AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AASXQ AAUEB AAWTL AAXQO ABASU ABBUW ABDIG ABJNI ABOCM ABPMR ABPXF ABQRW ABVCZ ABXVJ ABXYN ABZAD ABZZY ACDDN ACDOF ACEWG ACGFO ACGFS ACILI ACLDA ACOAL ACRKK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADCYY ADGGA ADHPY AE3 AE6 AEBDS AENEX AFBFQ AFCHL AFDTB AFEXH AFMBP AFNMH AFSOK AFUWQ AGINI AHMBA AHOMT AHQNM AHQVU AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC ASPBG AVWKF AYCSE AZFZN BAWUL BOYCO BQLVK BYPQX C45 CGR CS3 CUY CVF DIK DIWNM DU5 E3Z EBS ECM EEVPB EIF ERAAH EX3 F2K F2L F2M F2N F5P FCALG GNXGY GQDEL GX1 H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JF9 JG8 JK3 K-A K-F K8S KD2 KMI KQ8 L-C L7B N9A NPM N~7 N~B O9- OAG OAH OBH OCB ODMTH OGEVE OHH OHYEH OK1 OL1 OLB OLG OLH OLU OLV OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P2P PQQKQ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW UPT V2I VVN W2D W3M W8F WH7 WOQ WOW X3V X3W XXN XYM YFH YOC YSK YYM YZZ ZFV ZY1 ~H1 7X8 ADKSD ADSXY |
| ID | FETCH-LOGICAL-c5066-49df196b3f971fe3cc1f9c5068b79ee27d5f1adf2ad37b1ecfba35d980e542d12 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 198 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=00003017-202109210-00006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-4539 |
| IngestDate | Sun Sep 28 00:59:41 EDT 2025 Mon Jul 21 06:03:03 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | glucose macrophages diabetes mellitus inflammation epigenetics |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5066-49df196b3f971fe3cc1f9c5068b79ee27d5f1adf2ad37b1ecfba35d980e542d12 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3228-2172 0000-0002-1374-0329 0000-0001-9197-8124 0000-0001-7308-9286 0000-0002-3088-8878 0000-0001-6091-3088 0000-0001-7893-2324 0000-0003-3819-3779 0000-0001-5911-0026 0000-0002-8046-1688 0000-0003-3298-2697 0000-0001-9362-5373 0000-0003-4620-6373 0000-0002-7440-2964 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8448412 |
| PMID | 34255973 |
| PQID | 2551581556 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2551581556 pubmed_primary_34255973 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-September-21 |
| PublicationDateYYYYMMDD | 2021-09-21 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-September-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Circulation (New York, N.Y.) |
| PublicationTitleAlternate | Circulation |
| PublicationYear | 2021 |
| References | 34312499 - Nat Rev Cardiol. 2021 Oct;18(10):687. doi: 10.1038/s41569-021-00606-4. |
| References_xml | – reference: 34312499 - Nat Rev Cardiol. 2021 Oct;18(10):687. doi: 10.1038/s41569-021-00606-4. |
| SSID | ssj0006375 |
| Score | 2.6862183 |
| Snippet | Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 961 |
| SubjectTerms | Animals Atherosclerosis - immunology Atherosclerosis - pathology Cells, Cultured Diabetes Mellitus, Experimental - immunology Diabetes Mellitus, Experimental - pathology Endarterectomy, Carotid Humans Hyperglycemia - immunology Hyperglycemia - pathology Immunity, Cellular - immunology Leukocytes, Mononuclear - immunology Leukocytes, Mononuclear - pathology Macrophages - immunology Macrophages - pathology Mice Mice, 129 Strain Mice, Transgenic |
| Title | Hyperglycemia Induces Trained Immunity in Macrophages and Their Precursors and Promotes Atherosclerosis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34255973 https://www.proquest.com/docview/2551581556 |
| Volume | 144 |
| WOSCitedRecordID | wos00003017-202109210-00006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58Ubz4ftQXK4i32G42abInKcVSoS1FqvRWkuxuLWiiTRX6753ZpPQkCF72kAcsu7Mz3zx2PoAbjRDA4wl3jKvQQdGh5yCI9Z06zlrRRUdpu32-dIN-PxyN5KAMuOVlWeVSJ1pFrbKEYuQ1hL7cD9H6Ne4_Ph1ijaLsakmhsQ6bAqEMSXUwWnULbwjbaBdNlOd4vpAVuLZKosFrrcen1nO3aDjboYhg_Y6SfNR44DekaS1Oe_e_c92DnRJrsmYhHPuwptMDOGym6Ge_L9gts9WfNqx-AJVemWQ_hEkHfdPZ5G2R6PdpxIjcA5UJGxKZhFbs0d4omS_YNGW9iBjAXlEn5SxKFRtS2oENZhTEz7NZ8XBgK_7wiyaBzSzHueA4zY_guf0wbHWcko_BSXxEJo4nlcEDGwsjA260SBJuJL0K40Bq7QbKNzxSxo2UCGKuExNHwlcyrGvfQ1Fwj2EjzVJ9CiwM40hpIdGdMp6O0elDpES8J4h_dNwIqnC9XNkxyjslMaJUZ1_5eLW2VTgptmf8UTTmGAvPOkji7A9_n8O2S-UplGDiF7Bp8LTrS9hKvufTfHZlBQnH_qD3A8tL0wk |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperglycemia+Induces+Trained+Immunity+in+Macrophages+and+Their+Precursors+and+Promotes+Atherosclerosis&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Edgar%2C+Laurienne&rft.au=Akbar%2C+Naveed&rft.au=Braithwaite%2C+Adam+T&rft.au=Krausgruber%2C+Thomas&rft.date=2021-09-21&rft.issn=1524-4539&rft.eissn=1524-4539&rft.volume=144&rft.issue=12&rft.spage=961&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.120.046464&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-4539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-4539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-4539&client=summon |