Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries
With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g−1, lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited...
Uloženo v:
| Vydáno v: | Advanced science Ročník 8; číslo 17; s. e2101111 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Weinheim
John Wiley & Sons, Inc
01.09.2021
John Wiley and Sons Inc Wiley |
| Témata: | |
| ISSN: | 2198-3844, 2198-3844 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g−1, lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited energy density of the lithium‐ion battery cannot meet the growing demands of the advanced energy storage devices. Therefore, lithium metal anodes receive renewed attention, which have the potential to achieve high‐energy batteries. In this review, the history of the lithium anode is reviewed first. Then the failure mechanism of the lithium anode is analyzed, including dendrite, dead lithium, corrosion, and volume expansion of the lithium anode. Further, the strategies to alleviate the lithium anode issues in recent years are discussed emphatically. Eventually, remaining challenges of these strategies and possible research directions of lithium‐anode modification are presented to inspire innovation of lithium anode.
The improvement of lithium anodes plays a great role in developing lithium metal batteries with high energy density. With the aim of enlighting the future directions of the researches on lithium anodes, the challenges and progress in the field of lithium anodes in recent years are presented. |
|---|---|
| AbstractList | With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g−1, lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited energy density of the lithium‐ion battery cannot meet the growing demands of the advanced energy storage devices. Therefore, lithium metal anodes receive renewed attention, which have the potential to achieve high‐energy batteries. In this review, the history of the lithium anode is reviewed first. Then the failure mechanism of the lithium anode is analyzed, including dendrite, dead lithium, corrosion, and volume expansion of the lithium anode. Further, the strategies to alleviate the lithium anode issues in recent years are discussed emphatically. Eventually, remaining challenges of these strategies and possible research directions of lithium‐anode modification are presented to inspire innovation of lithium anode. With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g−1, lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited energy density of the lithium‐ion battery cannot meet the growing demands of the advanced energy storage devices. Therefore, lithium metal anodes receive renewed attention, which have the potential to achieve high‐energy batteries. In this review, the history of the lithium anode is reviewed first. Then the failure mechanism of the lithium anode is analyzed, including dendrite, dead lithium, corrosion, and volume expansion of the lithium anode. Further, the strategies to alleviate the lithium anode issues in recent years are discussed emphatically. Eventually, remaining challenges of these strategies and possible research directions of lithium‐anode modification are presented to inspire innovation of lithium anode. The improvement of lithium anodes plays a great role in developing lithium metal batteries with high energy density. With the aim of enlighting the future directions of the researches on lithium anodes, the challenges and progress in the field of lithium anodes in recent years are presented. With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g −1 , lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited energy density of the lithium‐ion battery cannot meet the growing demands of the advanced energy storage devices. Therefore, lithium metal anodes receive renewed attention, which have the potential to achieve high‐energy batteries. In this review, the history of the lithium anode is reviewed first. Then the failure mechanism of the lithium anode is analyzed, including dendrite, dead lithium, corrosion, and volume expansion of the lithium anode. Further, the strategies to alleviate the lithium anode issues in recent years are discussed emphatically. Eventually, remaining challenges of these strategies and possible research directions of lithium‐anode modification are presented to inspire innovation of lithium anode. Abstract With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g−1, lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited energy density of the lithium‐ion battery cannot meet the growing demands of the advanced energy storage devices. Therefore, lithium metal anodes receive renewed attention, which have the potential to achieve high‐energy batteries. In this review, the history of the lithium anode is reviewed first. Then the failure mechanism of the lithium anode is analyzed, including dendrite, dead lithium, corrosion, and volume expansion of the lithium anode. Further, the strategies to alleviate the lithium anode issues in recent years are discussed emphatically. Eventually, remaining challenges of these strategies and possible research directions of lithium‐anode modification are presented to inspire innovation of lithium anode. With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g−1, lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited energy density of the lithium‐ion battery cannot meet the growing demands of the advanced energy storage devices. Therefore, lithium metal anodes receive renewed attention, which have the potential to achieve high‐energy batteries. In this review, the history of the lithium anode is reviewed first. Then the failure mechanism of the lithium anode is analyzed, including dendrite, dead lithium, corrosion, and volume expansion of the lithium anode. Further, the strategies to alleviate the lithium anode issues in recent years are discussed emphatically. Eventually, remaining challenges of these strategies and possible research directions of lithium‐anode modification are presented to inspire innovation of lithium anode. The improvement of lithium anodes plays a great role in developing lithium metal batteries with high energy density. With the aim of enlighting the future directions of the researches on lithium anodes, the challenges and progress in the field of lithium anodes in recent years are presented. With the low redox potential of -3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g-1 , lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited energy density of the lithium-ion battery cannot meet the growing demands of the advanced energy storage devices. Therefore, lithium metal anodes receive renewed attention, which have the potential to achieve high-energy batteries. In this review, the history of the lithium anode is reviewed first. Then the failure mechanism of the lithium anode is analyzed, including dendrite, dead lithium, corrosion, and volume expansion of the lithium anode. Further, the strategies to alleviate the lithium anode issues in recent years are discussed emphatically. Eventually, remaining challenges of these strategies and possible research directions of lithium-anode modification are presented to inspire innovation of lithium anode.With the low redox potential of -3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g-1 , lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited energy density of the lithium-ion battery cannot meet the growing demands of the advanced energy storage devices. Therefore, lithium metal anodes receive renewed attention, which have the potential to achieve high-energy batteries. In this review, the history of the lithium anode is reviewed first. Then the failure mechanism of the lithium anode is analyzed, including dendrite, dead lithium, corrosion, and volume expansion of the lithium anode. Further, the strategies to alleviate the lithium anode issues in recent years are discussed emphatically. Eventually, remaining challenges of these strategies and possible research directions of lithium-anode modification are presented to inspire innovation of lithium anode. |
| Author | Wu, Jingkun Liu, Bin Zhong, Cheng Wang, Qingyu Hu, Wenbin Zhao, Zequan Shen, Yuanhao |
| AuthorAffiliation | 2 Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 119077 China 1 Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) Tianjin Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300072 China |
| AuthorAffiliation_xml | – name: 1 Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) Tianjin Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300072 China – name: 2 Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 119077 China |
| Author_xml | – sequence: 1 givenname: Qingyu surname: Wang fullname: Wang, Qingyu organization: Tianjin University – sequence: 2 givenname: Bin surname: Liu fullname: Liu, Bin organization: Tianjin University – sequence: 3 givenname: Yuanhao surname: Shen fullname: Shen, Yuanhao organization: Tianjin University – sequence: 4 givenname: Jingkun surname: Wu fullname: Wu, Jingkun organization: Tianjin University – sequence: 5 givenname: Zequan surname: Zhao fullname: Zhao, Zequan organization: Tianjin University – sequence: 6 givenname: Cheng orcidid: 0000-0003-1852-5860 surname: Zhong fullname: Zhong, Cheng email: cheng.zhong@tju.edu.cn organization: International Campus of Tianjin University – sequence: 7 givenname: Wenbin surname: Hu fullname: Hu, Wenbin organization: International Campus of Tianjin University |
| BookMark | eNqFkUtvEzEUhS1URB90y3okNmwSrj0ez8wGKQRKKwWx4LG17oyvE0cTu9ieov57JqSKaDf1xtbxOZ-vfM7ZiQ-eGHvDYc4BxHs0d2kuQHDg03rBzgRvm1nZSHny3_mUXaa0BQBelbXkzSt2WkreKlk3Z-x6GbyNwWfn10XeULHc4DCQX1MqnC9WLm_cuCsWPphJsSEepa-UcSg-Ys4UHaXX7KXFIdHlw37Bfl59_rG8nq2-fblZLlazvgIlZx0qkFAaaxXWgNx2LQdqeS8VL9FSr0zXdJIqjhKtUUq1aJQg0wpJWFblBbs5cE3Arb6NbofxXgd0-p8Q4lpjzK4fSNsawQoDrSIrG2XbxlQ1QKlkbwx13cT6cGDdjt2OTE8-RxweQR_feLfR63CnGymqpq4nwLsHQAy_R0pZ71zqaRjQUxiTFpWsKwmNgMn69ol1G8bop6-aXPW-Q8nV5JofXH0MKUWyx2E46H3net-5PnY-BeSTQO8yZhf2A7vh2dgfN9D9M4_oxadf30UNsvwL6yTBAA |
| CitedBy_id | crossref_primary_10_1002_ange_202204776 crossref_primary_10_1007_s10338_025_00581_0 crossref_primary_10_1002_aenm_202404295 crossref_primary_10_1016_j_carbon_2024_119647 crossref_primary_10_3390_molecules27165199 crossref_primary_10_1002_cssc_202500247 crossref_primary_10_1016_j_est_2024_114618 crossref_primary_10_1002_adfm_202409812 crossref_primary_10_1016_j_gee_2021_12_006 crossref_primary_10_1002_aenm_202203744 crossref_primary_10_1016_j_cej_2024_151780 crossref_primary_10_1002_adfm_202310516 crossref_primary_10_3390_molecules29092118 crossref_primary_10_1002_adfm_202512040 crossref_primary_10_1039_D3QM00604B crossref_primary_10_1016_j_ijhydene_2022_01_146 crossref_primary_10_3390_batteries9030188 crossref_primary_10_1016_j_cej_2024_156790 crossref_primary_10_1149_1945_7111_ade938 crossref_primary_10_1002_smll_202311500 crossref_primary_10_34133_energymatadv_0168 crossref_primary_10_1002_adma_202110423 crossref_primary_10_1002_smll_202300734 crossref_primary_10_1002_smll_202408988 crossref_primary_10_1007_s10854_023_10304_1 crossref_primary_10_1016_j_cej_2024_158857 crossref_primary_10_1021_acsami_5c05073 crossref_primary_10_1007_s11581_023_04980_6 crossref_primary_10_1016_j_mtener_2024_101675 crossref_primary_10_1007_s40843_021_2036_x crossref_primary_10_1016_j_jelechem_2025_118934 crossref_primary_10_1016_j_est_2023_107119 crossref_primary_10_1016_j_cej_2025_165412 crossref_primary_10_3390_batteries9080412 crossref_primary_10_1002_adfm_202504990 crossref_primary_10_1002_advs_202504997 crossref_primary_10_1002_smll_202408771 crossref_primary_10_1016_j_rser_2025_116126 crossref_primary_10_1002_adma_202404271 crossref_primary_10_1016_j_carbon_2023_118616 crossref_primary_10_1016_j_est_2025_116307 crossref_primary_10_1016_j_jpowsour_2024_234999 crossref_primary_10_1002_adma_202312773 crossref_primary_10_1016_j_jpowsour_2024_236019 crossref_primary_10_1016_j_cej_2022_138359 crossref_primary_10_1016_j_est_2024_115165 crossref_primary_10_1016_j_jpowsour_2025_236534 crossref_primary_10_1039_D5TA00725A crossref_primary_10_1016_j_jpowsour_2022_232139 crossref_primary_10_1016_j_carbon_2023_118066 crossref_primary_10_1039_D5TA02754C crossref_primary_10_1007_s40843_022_2370_1 crossref_primary_10_1016_j_est_2023_106854 crossref_primary_10_1557_s43581_025_00141_6 crossref_primary_10_1016_j_cej_2025_163231 crossref_primary_10_1016_j_cej_2025_166512 crossref_primary_10_1002_sus2_234 crossref_primary_10_1002_cjce_25272 crossref_primary_10_1021_acsaem_5c00138 crossref_primary_10_1039_D4QI00802B crossref_primary_10_1007_s12274_024_6907_z crossref_primary_10_1016_j_est_2024_114402 crossref_primary_10_1002_smll_202405143 crossref_primary_10_3390_ma16062240 crossref_primary_10_1007_s12598_023_02281_5 crossref_primary_10_1016_S1872_5805_23_60767_X crossref_primary_10_1039_D5TA00237K crossref_primary_10_1002_advs_202416120 crossref_primary_10_1002_smll_202308678 crossref_primary_10_1021_acs_nanolett_5c01606 crossref_primary_10_1002_smtd_202402082 crossref_primary_10_1016_j_jechem_2022_09_025 crossref_primary_10_1002_admt_202301902 crossref_primary_10_1002_cssc_202201352 crossref_primary_10_1002_aenm_202300042 crossref_primary_10_1038_s41598_023_36271_5 crossref_primary_10_1007_s11814_024_00241_y crossref_primary_10_1002_cnl2_33 crossref_primary_10_1002_er_8124 crossref_primary_10_1002_advs_202200622 crossref_primary_10_1039_D3NR01306E crossref_primary_10_26599_NRE_2025_9120173 crossref_primary_10_1039_D4TA07861F crossref_primary_10_1002_chem_202402032 crossref_primary_10_3390_molecules29235487 crossref_primary_10_1002_ange_202215866 crossref_primary_10_1021_acsaem_5c00925 crossref_primary_10_1016_j_est_2024_111558 crossref_primary_10_1016_j_apenergy_2024_124750 crossref_primary_10_1021_acsaem_5c02097 crossref_primary_10_1002_ente_202500185 crossref_primary_10_1021_acsapm_4c03883 crossref_primary_10_1002_batt_202500227 crossref_primary_10_1016_j_jpowsour_2025_237733 crossref_primary_10_1016_j_cej_2023_147077 crossref_primary_10_1002_ange_202505626 crossref_primary_10_1016_j_cej_2023_144477 crossref_primary_10_1002_smll_202402108 crossref_primary_10_1002_smll_202506238 crossref_primary_10_1002_smll_202405731 crossref_primary_10_1016_j_jpowsour_2024_235494 crossref_primary_10_1002_aenm_202400108 crossref_primary_10_1039_D3RA03184E crossref_primary_10_1149_1945_7111_ad4a10 crossref_primary_10_1016_j_jpcs_2023_111647 crossref_primary_10_1002_adfm_202314976 crossref_primary_10_1002_cnma_202300194 crossref_primary_10_1016_j_jcis_2024_06_116 crossref_primary_10_1002_admi_202102283 crossref_primary_10_1002_smll_202307951 crossref_primary_10_1039_D5QI00111K crossref_primary_10_1021_acssuschemeng_5c02480 crossref_primary_10_1063_5_0279513 crossref_primary_10_1002_smll_202306868 crossref_primary_10_6023_A24090267 crossref_primary_10_1002_bte2_20240122 crossref_primary_10_1016_j_cej_2025_164411 crossref_primary_10_1007_s12598_022_02256_y crossref_primary_10_1021_acsaem_5c00693 crossref_primary_10_1038_s41560_024_01624_5 crossref_primary_10_1016_j_joule_2023_03_001 crossref_primary_10_1002_anie_202505626 crossref_primary_10_1002_celc_202300216 crossref_primary_10_1002_batt_202500128 crossref_primary_10_1002_adfm_202407179 crossref_primary_10_1007_s43207_025_00524_y crossref_primary_10_1007_s10008_025_06268_3 crossref_primary_10_1002_batt_202200088 crossref_primary_10_1002_celc_202400209 crossref_primary_10_1016_j_jechem_2022_01_033 crossref_primary_10_1002_advs_202403797 crossref_primary_10_1016_j_jcis_2025_138196 crossref_primary_10_1021_acsnano_4c10091 crossref_primary_10_7498_aps_74_20250588 crossref_primary_10_1016_j_electacta_2025_146234 crossref_primary_10_1088_1361_6463_ae01b3 crossref_primary_10_3390_batteries10100369 crossref_primary_10_1002_batt_202400821 crossref_primary_10_1002_smll_202300106 crossref_primary_10_1002_metm_16 crossref_primary_10_1002_adfm_202310358 crossref_primary_10_1002_celc_202500171 crossref_primary_10_1021_acsnano_4c17836 crossref_primary_10_3390_molecules29112454 crossref_primary_10_1016_j_jpowsour_2025_237268 crossref_primary_10_1002_celc_202400219 crossref_primary_10_1039_D2CC02932D crossref_primary_10_1002_aenm_202200889 crossref_primary_10_1039_D4PY00741G crossref_primary_10_1002_sstr_202500449 crossref_primary_10_1002_adfm_202110110 crossref_primary_10_1002_ente_202201397 crossref_primary_10_1007_s11431_023_2594_8 crossref_primary_10_1016_j_cej_2022_134945 crossref_primary_10_1002_slct_202302517 crossref_primary_10_1016_j_nxener_2024_100237 crossref_primary_10_1002_adfm_202404427 crossref_primary_10_1016_j_colsurfa_2023_132703 crossref_primary_10_1002_adfm_202308022 crossref_primary_10_1002_smll_202503607 crossref_primary_10_1007_s12598_024_03102_z crossref_primary_10_1016_j_cej_2022_138993 crossref_primary_10_1002_batt_202200394 crossref_primary_10_1063_5_0233513 crossref_primary_10_1016_j_cossms_2023_101079 crossref_primary_10_1039_D4EE03468F crossref_primary_10_1002_adfm_202506529 crossref_primary_10_1039_D5TA03664J crossref_primary_10_1002_batt_202300303 crossref_primary_10_1016_j_cej_2023_148105 crossref_primary_10_1002_advs_202301737 crossref_primary_10_12677_JAPC_2023_124040 crossref_primary_10_1039_D5SE00848D crossref_primary_10_1002_smll_202310912 crossref_primary_10_3390_ma18112415 crossref_primary_10_1002_smll_202407395 crossref_primary_10_1002_sstr_202400174 crossref_primary_10_1016_j_jechem_2023_06_002 crossref_primary_10_1002_cphc_202400239 crossref_primary_10_1016_j_jcis_2024_06_043 crossref_primary_10_3390_molecules29174114 crossref_primary_10_1016_j_jcis_2022_12_081 crossref_primary_10_1002_adfm_202306868 crossref_primary_10_1002_aenm_202405307 crossref_primary_10_1002_cey2_423 crossref_primary_10_1002_cjoc_202200816 crossref_primary_10_1088_2752_5724_ace7e4 crossref_primary_10_1002_anie_202215866 crossref_primary_10_1021_acsami_5c06587 crossref_primary_10_1002_smsc_202500277 crossref_primary_10_1002_mats_202400029 crossref_primary_10_1002_smll_202506417 crossref_primary_10_1002_smll_202312124 crossref_primary_10_1016_j_cej_2024_149821 crossref_primary_10_1016_j_apsusc_2025_163688 crossref_primary_10_3390_molecules27217488 crossref_primary_10_1002_smll_202301237 crossref_primary_10_1016_j_cej_2024_158547 crossref_primary_10_1039_D4RA00333K crossref_primary_10_1016_j_est_2024_113683 crossref_primary_10_1002_aenm_202400722 crossref_primary_10_1002_smll_202503382 crossref_primary_10_1002_aenm_202301385 crossref_primary_10_1002_aenm_202304530 crossref_primary_10_1016_j_cej_2023_143681 crossref_primary_10_1016_j_jcis_2025_138323 crossref_primary_10_1016_j_cej_2024_150700 crossref_primary_10_1016_j_cej_2023_144888 crossref_primary_10_1002_adfm_202401442 crossref_primary_10_1002_inc2_12006 crossref_primary_10_1039_D4RA05371K crossref_primary_10_1016_j_est_2025_117547 crossref_primary_10_1063_5_0285201 crossref_primary_10_1002_adfm_202505390 crossref_primary_10_1039_D5MH00583C crossref_primary_10_1016_j_cej_2024_157202 crossref_primary_10_1002_smll_202200919 crossref_primary_10_1038_s41560_024_01519_5 crossref_primary_10_1007_s11814_025_00395_3 crossref_primary_10_1002_adfm_202403196 crossref_primary_10_1016_j_nanoen_2024_109836 crossref_primary_10_1002_aenm_202301035 crossref_primary_10_1039_D5TA04976H crossref_primary_10_1039_D5EB00042D crossref_primary_10_1016_j_carbon_2023_118498 crossref_primary_10_1002_aenm_202401289 crossref_primary_10_1016_j_elecom_2023_107537 crossref_primary_10_1002_batt_202300230 crossref_primary_10_1016_j_jcis_2023_08_075 crossref_primary_10_1002_ange_202407315 crossref_primary_10_1002_sstr_202200114 crossref_primary_10_1007_s40820_023_01055_z crossref_primary_10_1039_D2QM01283A crossref_primary_10_1002_advs_202417306 crossref_primary_10_1021_acsami_4c06822 crossref_primary_10_1016_j_carbon_2025_120497 crossref_primary_10_1002_advs_202105723 crossref_primary_10_1002_smll_202405909 crossref_primary_10_1016_j_desal_2023_116891 crossref_primary_10_1002_smll_202500300 crossref_primary_10_1002_eom2_12283 crossref_primary_10_1002_aenm_202103972 crossref_primary_10_1016_j_cej_2022_135293 crossref_primary_10_1002_aenm_202202843 crossref_primary_10_1002_smll_202405227 crossref_primary_10_3390_nano14110975 crossref_primary_10_1021_acsaem_5c00292 crossref_primary_10_1016_j_jcis_2023_08_187 crossref_primary_10_1002_anie_202204776 crossref_primary_10_1002_adfm_202413205 crossref_primary_10_1002_anie_202407315 crossref_primary_10_3389_fenrg_2023_1325316 crossref_primary_10_1002_smll_202412784 crossref_primary_10_1002_adfm_202303319 |
| Cites_doi | 10.1103/PhysRevB.91.134116 10.1038/s41560-019-0338-x 10.1021/acsaem.8b00821 10.1002/adma.202006702 10.1016/j.ceramint.2018.09.287 10.1016/j.ensm.2018.02.014 10.1039/C9TA11542K 10.1002/anie.202013812 10.1002/adma.201905517 10.1021/acsami.6b00831 10.1021/acsaem.9b00027 10.1021/acsami.6b13925 10.1002/adfm.201605989 10.1016/j.cej.2020.124789 10.1016/j.ensm.2017.11.003 10.1039/C9TA07551H 10.1002/adfm.202009694 10.1016/j.nanoen.2018.03.036 10.1016/j.mattod.2019.09.018 10.1002/adfm.201806752 10.1021/ja502133j 10.1039/C3EE40795K 10.1016/0025-5408(78)90023-5 10.1021/cm901452z 10.1002/aenm.201703022 10.1038/s41560-018-0199-8 10.1016/j.jpowsour.2019.01.074 10.1021/jacs.8b10488 10.1039/C9TA08415K 10.1016/j.ensm.2018.12.007 10.1039/C8TA05069D 10.1021/acs.chemmater.7b03027 10.1002/adfm.202008514 10.1201/9780824741389 10.1016/j.jpowsour.2019.05.003 10.1016/j.ensm.2019.03.029 10.1016/j.ensm.2019.09.020 10.1016/0167-2738(94)90408-1 10.1016/j.electacta.2019.05.061 10.1021/acsenergylett.8b02527 10.1016/j.jiec.2018.04.022 10.1021/ja312241y 10.1002/anie.201801737 10.1016/j.joule.2017.11.004 10.1021/acsami.9b03940 10.1038/nenergy.2017.12 10.1002/smll.201905620 10.1149/1.1519970 10.1039/C8NR06980H 10.1016/j.electacta.2004.03.065 10.1002/adma.202002325 10.1073/pnas.1712895115 10.1016/j.jpowsour.2010.07.020 10.1016/j.mattod.2018.04.007 10.1038/ncomms11794 10.1021/acscentsci.7b00480 10.1016/j.elecom.2006.07.037 10.1021/acsami.8b05185 10.1126/science.192.4244.1126 10.1016/j.jallcom.2019.06.321 10.1039/C7CS00863E 10.1016/j.joule.2018.11.025 10.1016/j.trechm.2019.06.007 10.1039/C9TA09935B 10.1016/j.nanoen.2019.104172 10.1126/science.aay8672 10.1002/adma.202006323 10.1002/aenm.201901604 10.1002/aenm.202003521 10.1126/science.1212741 10.1002/anie.201811955 10.1016/j.ensm.2019.04.013 10.1016/j.ensm.2018.09.015 10.1021/cr030203g 10.1021/acsami.7b15117 10.1039/C9TA07876B 10.1149/1.2095462 10.1002/adfm.202009805 10.1021/acsami.8b22156 10.1016/j.joule.2018.03.008 10.1002/aenm.201901796 10.1021/acsenergylett.8b00935 10.1002/cssc.201801445 10.1021/acs.nanolett.8b00183 10.1002/aenm.202002373 10.1002/aenm.202001440 10.1021/acsenergylett.6b00650 10.1002/aenm.201903422 10.1149/1.1850854 10.1038/s41560-021-00783-z 10.1039/C8TA11193F 10.1039/C8TA05354E 10.1021/acsnano.9b08803 10.1002/adma.201903248 10.1002/adfm.201908868 10.1016/j.nanoen.2018.04.078 10.1142/S1793292020500332 10.1002/smll.201704371 10.1002/smll.201802244 10.1016/j.nanoen.2019.02.048 10.1016/j.jpowsour.2007.12.081 10.1016/j.nanoen.2020.105481 10.1016/S0167-2738(02)00080-2 10.1002/anie.201807034 10.1038/nnano.2017.16 10.1002/aenm.201901932 10.1016/j.electacta.2015.04.168 10.1002/adfm.201902220 10.1002/adfm.201904547 10.1016/j.jpowsour.2013.12.099 10.1016/j.jpowsour.2019.226912 10.1039/C4CP03590A 10.1002/adfm.201910777 10.1021/acs.nanolett.0c00316 10.1073/pnas.1803634115 10.1016/j.ensm.2019.11.005 10.1002/adma.202008084 10.1021/acsami.9b07942 10.1002/aenm.202003416 10.1016/j.jpowsour.2020.227833 10.1016/j.joule.2017.06.004 10.1002/aenm.202003520 10.1016/B978-044452745-5.00184-2 10.1002/adfm.201808847 10.1021/acsaem.9b00537 10.1103/PhysRevA.42.7355 10.1002/adma.202000399 10.1002/adfm.202009917 10.1016/j.chempr.2018.05.002 10.1002/aenm.201803722 10.1038/s41560-017-0047-2 10.1002/smll.201804413 10.1002/adma.201905219 10.1246/cl.181050 10.1016/j.ensm.2019.11.007 10.1038/s41467-020-20339-1 10.1002/admi.201900186 10.1038/s41467-020-14550-3 10.1021/jacs.9b11750 10.1016/S0378-7753(02)00603-1 10.1016/j.jpowsour.2012.12.106 10.1039/C8TA09380F 10.1021/acsenergylett.7b00149 10.1038/s41560-020-0575-z 10.1021/acsaem.9b00369 10.1002/adma.202008081 10.1016/j.nanoen.2018.11.005 10.1149/2.0991914jes 10.1021/cr020731c 10.1016/j.ensm.2018.12.020 10.1002/adfm.202001444 10.1016/0378-7753(93)80099-B 10.1038/s41586-018-0397-3 10.1002/9783527637188 10.1002/advs.201900943 10.1016/j.nanoen.2019.103854 10.1039/C8TA11449H 10.1038/35104644 10.1039/C9TA03713F 10.1039/C8TA12539B 10.1002/aenm.201400993 10.1016/j.ensm.2018.11.003 10.1016/S0378-7753(98)00067-6 10.1002/adfm.201902496 10.1002/adma.201906221 10.1016/S0378-7753(98)00242-0 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. |
| DBID | 24P AAYXX CITATION 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1002/advs.202101111 |
| DatabaseName | Wiley-Blackwell Open Access Titles CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2198-3844 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_f7a0f2d096ef486f98d5700364cddebb PMC8425877 10_1002_advs_202101111 ADVS2704 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: Tianjin Natural Science Foundation for Distinguished Young Scholar funderid: 18JCJQJC46500 – fundername: National Youth Talent Support Program – fundername: National Natural Science Foundation of China and Guangdong Province funderid: U1601216 – fundername: National Natural Science Foundation for Excellent Young Scholar funderid: 51722403 – fundername: National Natural Science Foundation for Excellent Young Scholar grantid: 51722403 – fundername: National Natural Science Foundation of China and Guangdong Province grantid: U1601216 – fundername: Tianjin Natural Science Foundation for Distinguished Young Scholar grantid: 18JCJQJC46500 |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAMMB AAYXX ADMLS AEFGJ AFFHD AFPKN AGXDD AIDQK AIDYY CITATION EJD IGS PHGZM PHGZT 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c5064-ba60403dff6a70a1fb910e91c4613afec6db8b4e51a4afd6669ad62ed924ea353 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 441 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000668526600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2198-3844 |
| IngestDate | Tue Oct 14 18:59:12 EDT 2025 Tue Nov 04 01:52:00 EST 2025 Fri Sep 05 09:51:37 EDT 2025 Fri Jul 25 05:42:32 EDT 2025 Sat Nov 29 07:25:19 EST 2025 Tue Nov 18 20:05:28 EST 2025 Wed Jan 22 16:29:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5064-ba60403dff6a70a1fb910e91c4613afec6db8b4e51a4afd6669ad62ed924ea353 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-1852-5860 |
| OpenAccessLink | https://www.proquest.com/docview/2570210416?pq-origsite=%requestingapplication% |
| PMID | 34196478 |
| PQID | 2570210416 |
| PQPubID | 4365299 |
| PageCount | 25 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f7a0f2d096ef486f98d5700364cddebb pubmedcentral_primary_oai_pubmedcentral_nih_gov_8425877 proquest_miscellaneous_2547540820 proquest_journals_2570210416 crossref_primary_10_1002_advs_202101111 crossref_citationtrail_10_1002_advs_202101111 wiley_primary_10_1002_advs_202101111_ADVS2704 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Hoboken |
| PublicationTitle | Advanced science |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
| References | 2018; 560 2020; 20 2019; 11 2019; 13 2019; 15 2019; 17 2013; 244 2020; 16 2020; 15 1994; 69 2019; 18 2020; 11 2020; 10 2011; 196 2014; 254 2014; 136 2019; 166 2018; 49 2018; 47 1997; 268 2018; 6 2021; 79 2010; 22 1990; 42 2018; 8 2018; 3 2018; 2 2018; 4 2019; 20 2018; 1 2019; 22 2019; 21 2019; 23 2014; 16 2002; 148 2019; 29 2020; 452 2015; 91 2019; 316 2019; 437 2019; 430 2001; 414 2019; 7 2019; 9 2019; 4 2019; 3 2019; 6 2019; 31 2020; 142 2019; 2 2019; 1 2002; 5 1993; 43 2020; 33 2020; 32 1999 2018; 18 2016; 7 2004; 50 2020; 30 2020; 393 2019; 45 2018; 115 2019; 48 2020; 26 2020; 25 1998; 74 2021; 60 2018; 11 2018; 10 2016; 8 2018; 14 2017; 1 2017; 2 2019; 803 2019; 55 2019; 59 2019; 58 2019; 366 2003; 114 1999; 81 2017; 9 2020; 8 2020; 5 2021; 31 2015; 170 2021; 33 2019; 63 2020; 49 1988; 135 2014; 7 2011; 334 2021; 6 2004; 104 2015; 5 2005; 152 2018; 140 2017; 27 2009 2006; 8 2017; 29 1978; 13 1976; 192 2018; 65 2021; 12 2021; 11 2021 2017; 12 2013; 135 2019; 416 2020; 67 2008; 178 2012; 159 2018; 57 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 Ferrese A. (e_1_2_8_9_1) 2012; 159 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Boyle D. T. (e_1_2_8_171_1) 2021 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_156_1 e_1_2_8_18_1 Barton J. L. (e_1_2_8_42_1) 1997; 268 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_163_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 Kurzweil P. (e_1_2_8_8_1) 2009 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_7_1 Kanamura K. (e_1_2_8_27_1) 2009 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
| References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 186 year: 2021 publication-title: Nat. Commun. – volume: 60 start-page: 7770 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 16 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 42 start-page: 7355 year: 1990 publication-title: Phys. Rev. A – volume: 49 start-page: 403 year: 2018 publication-title: Nano Energy – volume: 192 start-page: 1126 year: 1976 publication-title: Science – volume: 45 start-page: 30 year: 2019 publication-title: Ceram. Int. – volume: 67 year: 2020 publication-title: Nano Energy – volume: 10 start-page: 2469 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 14 year: 2018 publication-title: Small – volume: 152 start-page: A396 year: 2005 publication-title: J. Electrochem. Soc. – volume: 1 start-page: 4426 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 26 start-page: 334 year: 2020 publication-title: Energy Storage Mater. – volume: 3 start-page: 732 year: 2019 publication-title: Joule – volume: 7 start-page: 513 year: 2014 publication-title: Energy Environ. Sci. – volume: 49 start-page: 1569 year: 2020 publication-title: Chem. Soc. Rev. – volume: 104 start-page: 4271 year: 2004 publication-title: Chem. Rev. – volume: 48 start-page: 429 year: 2019 publication-title: Chem. Lett. – volume: 148 start-page: 405 year: 2002 publication-title: Solid State Ionics – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 23 year: 1978 publication-title: Mater. Res. Bull. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 97 year: 2018 publication-title: ACS Cent. Sci. – volume: 7 start-page: 2184 year: 2019 publication-title: J. Mater. Chem. A – volume: 4 start-page: 1877 year: 2018 publication-title: Chem – volume: 115 start-page: 1156 year: 2018 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 69 start-page: 173 year: 1994 publication-title: Solid State Ionics – volume: 414 start-page: 359 year: 2001 publication-title: Nature – volume: 2 start-page: 3896 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 50 start-page: 535 year: 2004 publication-title: Electrochim. Acta – volume: 81 start-page: 925 year: 1999 publication-title: J. Power Sources – volume: 22 start-page: 142 year: 2019 publication-title: Mater. Today – volume: 14 start-page: 22 year: 2018 publication-title: Energy Storage Mater. – volume: 135 start-page: 2914 year: 1988 publication-title: J. Electrochem. Soc. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 63 year: 2019 publication-title: Nano Energy – volume: 21 start-page: 180 year: 2019 publication-title: Energy Storage Mater. – volume: 15 year: 2020 publication-title: Nano – volume: 18 start-page: 205 year: 2019 publication-title: Energy Storage Mater. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 560 start-page: 345 year: 2018 publication-title: Nature – volume: 79 year: 2021 publication-title: Nano Energy – volume: 6 year: 2019 publication-title: Adv. Mater. Interfaces – volume: 159 year: 2012 publication-title: Elsevier – volume: 7 start-page: 594 year: 2019 publication-title: J. Mater. Chem. A – volume: 22 start-page: 587 year: 2010 publication-title: Chem. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 start-page: 3808 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 371 year: 2020 publication-title: Energy Storage Mater. – volume: 47 start-page: 503 year: 2018 publication-title: Nano Energy – volume: 104 start-page: 4303 year: 2004 publication-title: Chem. Rev. – volume: 4 start-page: 483 year: 2019 publication-title: ACS Energy Lett. – volume: 1 start-page: 563 year: 2017 publication-title: Joule – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 267 year: 2018 publication-title: Energy Storage Mater. – volume: 55 start-page: 316 year: 2019 publication-title: Nano Energy – volume: 5 start-page: 299 year: 2020 publication-title: Nat. Energy – volume: 58 start-page: 1094 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 833 year: 2018 publication-title: Joule – volume: 803 start-page: 1075 year: 2019 publication-title: J. Alloys Compd. – volume: 178 start-page: 765 year: 2008 publication-title: J. Power Sources – volume: 3 start-page: 739 year: 2018 publication-title: Nat. Energy – volume: 11 start-page: 2710 year: 2019 publication-title: Nanoscale – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 303 year: 2021 publication-title: Nat. Energy – volume: 135 start-page: 4450 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 430 start-page: 130 year: 2019 publication-title: J. Power Sources – year: 2009 – volume: 91 year: 2015 publication-title: Phys. Rev. B – volume: 2 start-page: 3642 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 7 start-page: 9530 year: 2019 publication-title: J. Mater. Chem. A – volume: 254 start-page: 168 year: 2014 publication-title: J. Power Sources – volume: 20 start-page: 3403 year: 2020 publication-title: Nano Lett. – volume: 316 start-page: 52 year: 2019 publication-title: Electrochim. Acta – volume: 2 start-page: 664 year: 2017 publication-title: ACS Energy Lett. – volume: 2 start-page: 184 year: 2018 publication-title: Joule – volume: 196 start-page: 13 year: 2011 publication-title: J. Power Sources – volume: 393 year: 2020 publication-title: Chem. Eng. J. – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 25 start-page: 644 year: 2020 publication-title: Energy Storage Mater. – volume: 3 start-page: 2059 year: 2018 publication-title: ACS Energy Lett. – volume: 268 start-page: 485 year: 1997 publication-title: Proc. R. Soc. London, Ser. A – volume: 11 start-page: 829 year: 2020 publication-title: Nat. Commun. – volume: 3 start-page: 16 year: 2018 publication-title: Nat. Energy – volume: 16 year: 2020 publication-title: Small – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 2 start-page: 924 year: 2017 publication-title: ACS Energy Lett. – volume: 416 start-page: 141 year: 2019 publication-title: J. Power Sources – volume: 18 start-page: 2067 year: 2018 publication-title: Nano Lett. – volume: 244 start-page: 363 year: 2013 publication-title: J. Power Sources – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 170 start-page: 353 year: 2015 publication-title: Electrochim. Acta – volume: 142 start-page: 2438 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 3821 year: 2018 publication-title: ChemSusChem – volume: 5 start-page: A286 year: 2002 publication-title: Electrochem. Solid‐State Lett. – volume: 43 start-page: 27 year: 1993 publication-title: J. Power Sources – volume: 59 start-page: 500 year: 2019 publication-title: Nano Energy – volume: 33 start-page: 56 year: 2020 publication-title: Mater. Today – volume: 8 start-page: 2021 year: 2020 publication-title: J. Mater. Chem. A – year: 2021 publication-title: Nat. Energy – volume: 57 start-page: 5072 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 136 start-page: 7395 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 115 start-page: 5676 year: 2018 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 23 start-page: 556 year: 2019 publication-title: Energy Storage Mater. – volume: 17 start-page: 284 year: 2019 publication-title: Energy Storage Mater. – volume: 114 start-page: 277 year: 2003 publication-title: J. Power Sources – volume: 13 year: 2019 publication-title: ACS Nano – volume: 15 year: 2019 publication-title: Small – volume: 1 start-page: 693 year: 2019 publication-title: Trends Chem. – volume: 20 start-page: 291 year: 2019 publication-title: Energy Storage Mater. – volume: 437 year: 2019 publication-title: J. Power Sources – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 8 start-page: 1639 year: 2006 publication-title: Electrochem. Commun. – volume: 29 start-page: 9182 year: 2017 publication-title: Chem. Mater. – volume: 7 start-page: 3391 year: 2019 publication-title: J. Mater. Chem. A – volume: 452 year: 2020 publication-title: J. Power Sources – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 74 start-page: 219 year: 1998 publication-title: J. Power Sources – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 65 start-page: 137 year: 2018 publication-title: J. Ind. Eng. Chem. – volume: 22 start-page: 29 year: 2019 publication-title: Energy Storage Mater. – volume: 366 start-page: 426 year: 2019 publication-title: Science – volume: 2 start-page: 2708 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 4 start-page: 180 year: 2019 publication-title: Nat. Energy – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 166 year: 2019 publication-title: J. Electrochem. Soc. – year: 1999 – ident: e_1_2_8_83_1 doi: 10.1103/PhysRevB.91.134116 – ident: e_1_2_8_58_1 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_8_94_1 doi: 10.1021/acsaem.8b00821 – ident: e_1_2_8_124_1 doi: 10.1002/adma.202006702 – ident: e_1_2_8_51_1 doi: 10.1016/j.ceramint.2018.09.287 – ident: e_1_2_8_67_1 doi: 10.1016/j.ensm.2018.02.014 – ident: e_1_2_8_112_1 doi: 10.1039/C9TA11542K – ident: e_1_2_8_17_1 doi: 10.1002/anie.202013812 – volume-title: Encyclopedia of Electrochemical Power Sources year: 2009 ident: e_1_2_8_8_1 – ident: e_1_2_8_20_1 doi: 10.1002/adma.201905517 – ident: e_1_2_8_117_1 doi: 10.1021/acsami.6b00831 – ident: e_1_2_8_159_1 doi: 10.1021/acsaem.9b00027 – ident: e_1_2_8_118_1 doi: 10.1021/acsami.6b13925 – ident: e_1_2_8_73_1 doi: 10.1002/adfm.201605989 – ident: e_1_2_8_96_1 doi: 10.1016/j.cej.2020.124789 – ident: e_1_2_8_123_1 doi: 10.1016/j.ensm.2017.11.003 – ident: e_1_2_8_151_1 doi: 10.1039/C9TA07551H – ident: e_1_2_8_45_1 doi: 10.1002/adfm.202009694 – ident: e_1_2_8_170_1 doi: 10.1016/j.nanoen.2018.03.036 – ident: e_1_2_8_11_1 doi: 10.1016/j.mattod.2019.09.018 – ident: e_1_2_8_121_1 doi: 10.1002/adfm.201806752 – ident: e_1_2_8_37_1 doi: 10.1021/ja502133j – ident: e_1_2_8_65_1 doi: 10.1039/C3EE40795K – ident: e_1_2_8_84_1 doi: 10.1016/0025-5408(78)90023-5 – ident: e_1_2_8_157_1 doi: 10.1021/cm901452z – ident: e_1_2_8_48_1 doi: 10.1002/aenm.201703022 – ident: e_1_2_8_53_1 doi: 10.1038/s41560-018-0199-8 – ident: e_1_2_8_135_1 doi: 10.1016/j.jpowsour.2019.01.074 – ident: e_1_2_8_133_1 doi: 10.1021/jacs.8b10488 – ident: e_1_2_8_114_1 doi: 10.1039/C9TA08415K – ident: e_1_2_8_140_1 doi: 10.1016/j.ensm.2018.12.007 – ident: e_1_2_8_131_1 doi: 10.1039/C8TA05069D – ident: e_1_2_8_81_1 doi: 10.1021/acs.chemmater.7b03027 – ident: e_1_2_8_23_1 doi: 10.1002/adfm.202008514 – ident: e_1_2_8_85_1 doi: 10.1201/9780824741389 – ident: e_1_2_8_127_1 doi: 10.1016/j.jpowsour.2019.05.003 – ident: e_1_2_8_144_1 doi: 10.1016/j.ensm.2019.03.029 – ident: e_1_2_8_41_1 doi: 10.1016/j.ensm.2019.09.020 – ident: e_1_2_8_6_1 doi: 10.1016/0167-2738(94)90408-1 – ident: e_1_2_8_153_1 doi: 10.1016/j.electacta.2019.05.061 – ident: e_1_2_8_158_1 doi: 10.1021/acsenergylett.8b02527 – ident: e_1_2_8_108_1 doi: 10.1016/j.jiec.2018.04.022 – ident: e_1_2_8_154_1 doi: 10.1021/ja312241y – ident: e_1_2_8_91_1 doi: 10.1002/anie.201801737 – ident: e_1_2_8_62_1 doi: 10.1016/j.joule.2017.11.004 – ident: e_1_2_8_155_1 doi: 10.1021/acsami.9b03940 – ident: e_1_2_8_77_1 doi: 10.1038/nenergy.2017.12 – ident: e_1_2_8_137_1 doi: 10.1002/smll.201905620 – ident: e_1_2_8_15_1 doi: 10.1149/1.1519970 – ident: e_1_2_8_126_1 doi: 10.1039/C8NR06980H – ident: e_1_2_8_34_1 doi: 10.1016/j.electacta.2004.03.065 – ident: e_1_2_8_56_1 doi: 10.1002/adma.202002325 – ident: e_1_2_8_93_1 doi: 10.1073/pnas.1712895115 – ident: e_1_2_8_3_1 doi: 10.1016/j.jpowsour.2010.07.020 – ident: e_1_2_8_167_1 doi: 10.1016/j.mattod.2018.04.007 – ident: e_1_2_8_95_1 doi: 10.1038/ncomms11794 – ident: e_1_2_8_86_1 doi: 10.1021/acscentsci.7b00480 – volume: 159 start-page: A1615 year: 2012 ident: e_1_2_8_9_1 publication-title: Elsevier – ident: e_1_2_8_35_1 doi: 10.1016/j.elecom.2006.07.037 – ident: e_1_2_8_78_1 doi: 10.1021/acsami.8b05185 – ident: e_1_2_8_13_1 doi: 10.1126/science.192.4244.1126 – ident: e_1_2_8_116_1 doi: 10.1016/j.jallcom.2019.06.321 – ident: e_1_2_8_5_1 doi: 10.1039/C7CS00863E – ident: e_1_2_8_40_1 doi: 10.1016/j.joule.2018.11.025 – ident: e_1_2_8_60_1 doi: 10.1016/j.trechm.2019.06.007 – ident: e_1_2_8_100_1 doi: 10.1039/C9TA09935B – ident: e_1_2_8_125_1 doi: 10.1016/j.nanoen.2019.104172 – ident: e_1_2_8_57_1 doi: 10.1126/science.aay8672 – ident: e_1_2_8_150_1 doi: 10.1002/adma.202006323 – ident: e_1_2_8_97_1 doi: 10.1002/aenm.201901604 – ident: e_1_2_8_26_1 doi: 10.1002/aenm.202003521 – ident: e_1_2_8_10_1 doi: 10.1126/science.1212741 – ident: e_1_2_8_47_1 doi: 10.1002/anie.201811955 – ident: e_1_2_8_165_1 doi: 10.1016/j.ensm.2019.04.013 – ident: e_1_2_8_92_1 doi: 10.1016/j.ensm.2018.09.015 – ident: e_1_2_8_46_1 doi: 10.1021/cr030203g – ident: e_1_2_8_69_1 doi: 10.1021/acsami.7b15117 – ident: e_1_2_8_115_1 doi: 10.1039/C9TA07876B – ident: e_1_2_8_66_1 doi: 10.1149/1.2095462 – ident: e_1_2_8_21_1 doi: 10.1002/adfm.202009805 – ident: e_1_2_8_68_1 doi: 10.1021/acsami.8b22156 – ident: e_1_2_8_28_1 doi: 10.1016/j.joule.2018.03.008 – ident: e_1_2_8_141_1 doi: 10.1002/aenm.201901796 – ident: e_1_2_8_163_1 doi: 10.1021/acsenergylett.8b00935 – ident: e_1_2_8_44_1 doi: 10.1002/cssc.201801445 – ident: e_1_2_8_145_1 doi: 10.1021/acs.nanolett.8b00183 – volume: 268 start-page: 485 year: 1997 ident: e_1_2_8_42_1 publication-title: Proc. R. Soc. London, Ser. A – ident: e_1_2_8_166_1 doi: 10.1002/aenm.202002373 – ident: e_1_2_8_18_1 doi: 10.1002/aenm.202001440 – ident: e_1_2_8_52_1 doi: 10.1021/acsenergylett.6b00650 – ident: e_1_2_8_103_1 doi: 10.1002/aenm.201903422 – ident: e_1_2_8_98_1 doi: 10.1149/1.1850854 – ident: e_1_2_8_162_1 doi: 10.1038/s41560-021-00783-z – ident: e_1_2_8_132_1 doi: 10.1039/C8TA11193F – ident: e_1_2_8_90_1 doi: 10.1039/C8TA05354E – ident: e_1_2_8_105_1 doi: 10.1021/acsnano.9b08803 – ident: e_1_2_8_74_1 doi: 10.1002/adma.201903248 – ident: e_1_2_8_22_1 doi: 10.1002/adfm.201908868 – ident: e_1_2_8_164_1 doi: 10.1016/j.nanoen.2018.04.078 – ident: e_1_2_8_1_1 doi: 10.1142/S1793292020500332 – ident: e_1_2_8_147_1 doi: 10.1002/smll.201704371 – ident: e_1_2_8_88_1 doi: 10.1002/smll.201802244 – ident: e_1_2_8_128_1 doi: 10.1016/j.nanoen.2019.02.048 – ident: e_1_2_8_38_1 doi: 10.1016/j.jpowsour.2007.12.081 – ident: e_1_2_8_152_1 doi: 10.1016/j.nanoen.2020.105481 – ident: e_1_2_8_55_1 doi: 10.1016/S0167-2738(02)00080-2 – ident: e_1_2_8_79_1 doi: 10.1002/anie.201807034 – year: 2021 ident: e_1_2_8_171_1 publication-title: Nat. Energy – ident: e_1_2_8_4_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_8_119_1 doi: 10.1002/aenm.201901932 – ident: e_1_2_8_72_1 doi: 10.1016/j.electacta.2015.04.168 – ident: e_1_2_8_76_1 doi: 10.1002/adfm.201902220 – ident: e_1_2_8_107_1 doi: 10.1002/adfm.201904547 – ident: e_1_2_8_33_1 doi: 10.1016/j.jpowsour.2013.12.099 – ident: e_1_2_8_156_1 doi: 10.1016/j.jpowsour.2019.226912 – ident: e_1_2_8_32_1 doi: 10.1039/C4CP03590A – ident: e_1_2_8_49_1 doi: 10.1002/adfm.201910777 – ident: e_1_2_8_129_1 doi: 10.1021/acs.nanolett.0c00316 – ident: e_1_2_8_80_1 doi: 10.1073/pnas.1803634115 – ident: e_1_2_8_109_1 doi: 10.1016/j.ensm.2019.11.005 – ident: e_1_2_8_19_1 doi: 10.1002/adma.202008084 – ident: e_1_2_8_71_1 doi: 10.1021/acsami.9b07942 – ident: e_1_2_8_16_1 doi: 10.1002/aenm.202003416 – ident: e_1_2_8_82_1 doi: 10.1016/j.jpowsour.2020.227833 – ident: e_1_2_8_61_1 doi: 10.1016/j.joule.2017.06.004 – ident: e_1_2_8_24_1 doi: 10.1002/aenm.202003520 – ident: e_1_2_8_29_1 doi: 10.1016/B978-044452745-5.00184-2 – ident: e_1_2_8_139_1 doi: 10.1002/adfm.201808847 – ident: e_1_2_8_146_1 doi: 10.1021/acsaem.9b00537 – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevA.42.7355 – ident: e_1_2_8_113_1 doi: 10.1002/adma.202000399 – ident: e_1_2_8_143_1 doi: 10.1002/adfm.202009917 – ident: e_1_2_8_160_1 doi: 10.1016/j.chempr.2018.05.002 – ident: e_1_2_8_169_1 doi: 10.1002/aenm.201803722 – ident: e_1_2_8_59_1 doi: 10.1038/s41560-017-0047-2 – ident: e_1_2_8_111_1 doi: 10.1002/smll.201804413 – ident: e_1_2_8_12_1 doi: 10.1002/adma.201905219 – ident: e_1_2_8_148_1 doi: 10.1246/cl.181050 – ident: e_1_2_8_130_1 doi: 10.1016/j.ensm.2019.11.007 – ident: e_1_2_8_87_1 doi: 10.1038/s41467-020-20339-1 – ident: e_1_2_8_106_1 doi: 10.1002/admi.201900186 – ident: e_1_2_8_142_1 doi: 10.1038/s41467-020-14550-3 – ident: e_1_2_8_30_1 doi: 10.1021/jacs.9b11750 – ident: e_1_2_8_31_1 doi: 10.1016/S0378-7753(02)00603-1 – ident: e_1_2_8_89_1 doi: 10.1016/j.jpowsour.2012.12.106 – ident: e_1_2_8_70_1 doi: 10.1039/C8TA09380F – ident: e_1_2_8_120_1 doi: 10.1021/acsenergylett.7b00149 – ident: e_1_2_8_104_1 doi: 10.1038/s41560-020-0575-z – ident: e_1_2_8_136_1 doi: 10.1021/acsaem.9b00369 – ident: e_1_2_8_25_1 doi: 10.1002/adma.202008081 – ident: e_1_2_8_149_1 doi: 10.1016/j.nanoen.2018.11.005 – ident: e_1_2_8_54_1 doi: 10.1149/2.0991914jes – ident: e_1_2_8_7_1 doi: 10.1021/cr020731c – ident: e_1_2_8_161_1 doi: 10.1016/j.ensm.2018.12.020 – ident: e_1_2_8_99_1 doi: 10.1002/adfm.202001444 – ident: e_1_2_8_39_1 doi: 10.1016/0378-7753(93)80099-B – ident: e_1_2_8_168_1 doi: 10.1038/s41586-018-0397-3 – ident: e_1_2_8_14_1 doi: 10.1002/9783527637188 – ident: e_1_2_8_138_1 doi: 10.1002/advs.201900943 – ident: e_1_2_8_134_1 doi: 10.1016/j.nanoen.2019.103854 – ident: e_1_2_8_102_1 doi: 10.1039/C8TA11449H – ident: e_1_2_8_2_1 doi: 10.1038/35104644 – ident: e_1_2_8_63_1 doi: 10.1039/C9TA03713F – ident: e_1_2_8_110_1 doi: 10.1039/C8TA12539B – ident: e_1_2_8_50_1 doi: 10.1002/aenm.201400993 – ident: e_1_2_8_64_1 doi: 10.1016/j.ensm.2018.11.003 – ident: e_1_2_8_43_1 doi: 10.1016/S0378-7753(98)00067-6 – ident: e_1_2_8_75_1 doi: 10.1002/adfm.201902496 – ident: e_1_2_8_101_1 doi: 10.1002/adma.201906221 – ident: e_1_2_8_122_1 doi: 10.1016/S0378-7753(98)00242-0 – volume-title: Encyclopedia of Electrochemical Power Sources year: 2009 ident: e_1_2_8_27_1 |
| SSID | ssj0001537418 |
| Score | 2.6498713 |
| SecondaryResourceType | review_article |
| Snippet | With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g−1, lithium metal has been considered as promising anode... With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g −1 , lithium metal has been considered as promising anode... With the low redox potential of -3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g-1 , lithium metal has been considered as promising anode... Abstract With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g−1, lithium metal has been considered as promising... |
| SourceID | doaj pubmedcentral proquest crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e2101111 |
| SubjectTerms | Corrosion coulombic efficiency cyclic performance Electric vehicles Electrolytes Energy high energy density Lithium lithium anodes, lithium metal batteries practical application Review Reviews Simulation Sulfur |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEB5K6KGX0vRB3c0WFQrdHkwcW7bs425oyGG7FNqF3IweI2JonSWP_f07YzsmLpRcepUGS57RaL5B0jcAn3NvZ6lTPtRpbEOZah2aRGKIPnIEtyOX6KZqya26u8tXq-LHSakvvhPW0gO3ipt6pSMfO0La6GWe-SJ3TMmeZNKSZxrDuy-hnpNkqn0fnDAty5GlMYqn2j0yOzdlOLxJDKJQQ9Y_QJh_3488xa1N4Fm8gpcdYhTX7UzH8Azr1zDufHInrjri6K9vYMnP95iQgMKRIGAn5sdKKTtR1eK22q-rwx9BGb-jFkKrfdN3JAwuWq5NSp3fwv3i26_5MuwqJYSWCedCozNyxsR5n2kV6Zk3hAKwmFlJ0Vp7tJkzuZGYzrTU3lHKUmgyBTrKvlAnafIORvWmxvcgUMbK-JTivssks40mRlMIM4g-tgWaAMKj5krb0YhzNYvfZUuAHJes6bLXdABfevmHlkDjn5I3bIheiomvmwZaDmW3HMpzyyGAydGMZeeNNASJ0CCEPQP41HeTH_HhiK5xc2AZqVKuvh0FoAbmH0xo2FNX64aRm88yc6VIN81COfOjJSGOn7GK5If_8ccX8IK_3N57m8Bovz3gJTy3j_tqt_3YuMUTV5wTNw priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley-Blackwell Open Access Titles dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9UwEIUtKCzYUMpDvW1BRkICFlaT2ImTZVtRdVGqSoDUXTS2xzQS5Fb30d_PTJKbNkgIIbbOKA_HJz7jJN8I8a6MPs2DjQryzCuTAyinDSqMSSC7nQQNXdWSc3txUV5dVZf3_uLv-RDjghsro3tes8DBLQ_voKEQbhm3TSkLq_6heJSmuuTiDZm5vFtlyTXjWbjCHGXXSpfGbMiNSXY43cVkZuoA_hPX-fs3k_e9bDcZnW7__2U8E08HIyqP-pGzIx5g-1zsDFJfyg8Dj_rjC3HGfwUy54BmOUl-UZ5sCrAsZdPK82Z13ax_yqN2HqiFTPDY9BnJ2sse4UkZ-Uvx7fTT15MzNRRgUJ45dspBQRrXIcYCbAJpdGQusEq9IRMAEX0RXOkM5ikYiIEyoQroDmOgpA5B5_qV2GrnLe4KiSazLuZkJ0JhGGKqHdDM6BBj5it0M6E2nV_7gU7ORTJ-1D1XOau5o-qxo2bi_Rh_03M5_hh5zPdyjGKedtcwX3yvB3nW0UISs0D5HEZTFrEqA4P_dWE8Pf8dnd7BZiTUg8jpEBRCByFLOxNvx80kT37nAi3O1xxjbM5FvZOZsJMRNDmh6Za2ue5A3_yKtLSW-qYbQX-50JqMzJfMJmbvH-P3xRNu7L-cOxBbq8UaX4vH_nbVLBdvOkH9ArWZIwA priority: 102 providerName: Wiley-Blackwell |
| Title | Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202101111 https://www.proquest.com/docview/2570210416 https://www.proquest.com/docview/2547540820 https://pubmed.ncbi.nlm.nih.gov/PMC8425877 https://doaj.org/article/f7a0f2d096ef486f98d5700364cddebb |
| Volume | 8 |
| WOSCitedRecordID | wos000668526600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2O dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2P dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Open Access: Wiley-Blackwell Open Access Journals customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: WIN dateStart: 20140101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RXQ5cgPJQt5RVkJCAQ9Rs4sTJCbVVq1bqLhEPsZwiP2kkSNp99PczkziBIAEHLpZiO4nj8Xi-sZ1vAF6mVs1iza0v4lD5LBbClxEzvrGBRrgd6Eg0UUsu-WKRLpdZ7hbc1u5YZTcnNhO1rhWtkR9StDV0TxA_vL2-8SlqFO2uuhAaOzAmpjI2gvHx6SJ__3OVJY6InqVjawzCQ6FviaUbH0WTxcAaNaT9A6T5-znJX_FrY4DOHvxv0x_CfQc9vaN2rOzCHVM9gl2n3GvvtWOgfvMYzuk_QGI2QLvmIUL0TrqQK2uvrLzLcnNVbr97R1WtMQdhb581NwjmvZa0E33wJ_Dp7PTjybnvQi74ipjrfCkS1OpIW5sIHoiZlQgnTDZTDM2-sEYlWqaSmXgmmLAafZ9MoEyNRjfOiCiOnsKoqiuzB55hIZc2RgChE0a0pZEUaAulMTZUmZET8LuuL5TjI6ewGN-Klkk5LEhURS-qCbzq61-3TBx_rHlMkuxrEYN2k1GvvhZOIQvLRWBDjR6csSxNbJZqovqPEqZwxpfYvINOmIVTa3xFL8kJvOiLUSFpl0VUpt5SHcZjCuMdTIAPxs-gQcOSqrxqqL1pUzTlHPumGWn_-NACocuHkAds_--NfQb36J72aNwBjDarrXkOd9XtplyvprATshxTvkynTn-mzdIEpvPwXZNi-Ti_mOdf8OrzxeIHUioo2Q |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKRJcgPIQgQKLBAIOVh177bUPCJVClahJFIkilZPZJ7UEdsmjiD_Fb2TGLzAScOqB63qjjO3PM994198H8DhxehQZ4TwZBdrjkZSeCrn1rPMN0m3fhLJyLZmK-Tw5OUkXW_C9_RaGtlW2ObFK1KbU9I58j9zWsD1B_vDy7ItHrlG0utpaaNSwOLLfvmLLtnoxeY3390kQHL45Phh7jauAp0mczVMyRuCGxrlYCl-OnMKKadOR5ljZpLM6NipR3EYjyaUzSO9TiWFbg52KlZVLBKb8bY5gTwawvZjMFu9_vtWJQpKDadUh_WBPmnNSBcfQKTn1ql9lEtBjtr_vy_yVL1cF7_Da_3aprsPVhlqz_fpZ2IEtW9yAnSZ5rdizRmH7-U0Y03eOpNyAdZshA2YHraXMiuUFm-br03zzme0XpcERpPXd0Mxis8JqUdLcrm7Buws5o9swKMrC3gFmeSCUi5AgmZiTLGuoJNZ6Za0LdGrVELz2Vme60Vsn249PWa0UHWQEjayDxhCedvPPaqWRP858RcjpZpFCeDVQLj9mTcLJnJC-Cwx2qNbxJHZpYsjKIIy5xoqmMLzdFjxZk7bwLzrkDOFRdxgTDq0iycKWG5rDRUQ25f4QRA-vvYD6R4r8tJIup0XfRAi8NhWy_3GiGVKzt4Hw-d2_B_sQLo-PZ9NsOpkf3YMr9Pt6G-AuDNbLjb0Pl_T5Ol8tHzTPK4MPF437HzpHgC4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqghAboDzElAJGAgGLaDKOEycLhErLqFWno5EAqbvgJ41EkzKZKeLX-DrudR4QJGDVBVvHo7GT43vPjZ1zCHmaOj2JjXCBjJkOeCxloCJuA-tCA3Q7NJH0riUzMZ-nJyfZYoN8776FwWOVXUz0gdpUGt-Rj9FtDcoT4A9j1x6LWOxPX59_CdBBCndaOzuNBiJH9ttXKN_qV4f78KyfMTZ9-37vIGgdBgKNQm2BkgmAODLOJVKEcuIUZE-bTTSHLCed1YlRqeI2nkgunQGqn0mYgjVQtVjpHSMg_F8RPI5xdR2zxc_3O3GEwjCdTmTIxtJcoD44TALD1CAPeruAAcf9_YTmr8zZp77pzf_5pt0iN1rCTXebFbJFNmx5m2y1Ia2mL1rd7Zd3yAF-_Yh6DpDNKfBiutcZzdS0KOmsWJ0W6zO6W1YGWoDs903HFkoY2kiVFra-Sz5cyozukc2yKu19Qi1nQrkYaJNJOIq1RkoCA1DWOqYzq0Yk6B57rlsVdjQD-Zw3-tEsR5jkPUxG5Hnf_7zRH_ljzzeIor4X6ob7hmr5KW_DUO6EDB0zULdax9PEZalBg4Mo4RrynILh7XRAyttgBn_Ro2hEnvSXIQzh3pIsbbXGPlzEaF4ejogYYHcwoOGVsjj1gua4FZwKAffGo_wfE82BsL1jIuTbfx_sY3INwJ7PDudHD8h1_HlzNnCHbK6Wa_uQXNUXq6JePvILl5KPlw36H-IVh2w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Confronting+the+Challenges+in+Lithium+Anodes+for+Lithium+Metal+Batteries&rft.jtitle=Advanced+science&rft.au=Wang%2C+Qingyu&rft.au=Liu%2C+Bin&rft.au=Shen%2C+Yuanhao&rft.au=Wu%2C+Jingkun&rft.date=2021-09-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2198-3844&rft.volume=8&rft.issue=17&rft_id=info:doi/10.1002%2Fadvs.202101111&rft_id=info%3Apmid%2F34196478&rft.externalDocID=PMC8425877 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |