Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature
•Macroalgae residue is promising raw material for producing biochar.•Biochar derived from pigments-extracted macroalgae is a promising adsorbent.•The malachite green adsorption capacity of MDBC800 is 5306.2 mg/g. Biochar is known to efficiently adsorb dyes from wastewater. In this study, biochar was...
Uloženo v:
| Vydáno v: | Bioresource technology Ročník 259; s. 104 - 110 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Elsevier Ltd
01.07.2018
|
| Témata: | |
| ISSN: | 0960-8524, 1873-2976, 1873-2976 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Macroalgae residue is promising raw material for producing biochar.•Biochar derived from pigments-extracted macroalgae is a promising adsorbent.•The malachite green adsorption capacity of MDBC800 is 5306.2 mg/g.
Biochar is known to efficiently adsorb dyes from wastewater. In this study, biochar was derived from macroalgae residue by pyrolysis, and the influence of varying temperature (from 400 °C to 800 °C) on biochar characteristics was investigated. Among the biochar samples tested, macroalgae-derived biochar possessing highly porous structure, special surface chemical behavior and high thermal stability was found to be efficient in removing malachite green, crystal violet and Congo red. The biochar derived by pyrolysis at 800 °C showed the highest adsorption capacity for malachite green (5306.2 mg g−1). In this study, the transformation of microalgae residue into a highly efficient dye adsorbent is a promising procedure for economic and environmental protection. |
|---|---|
| AbstractList | Biochar is known to efficiently adsorb dyes from wastewater. In this study, biochar was derived from macroalgae residue by pyrolysis, and the influence of varying temperature (from 400 °C to 800 °C) on biochar characteristics was investigated. Among the biochar samples tested, macroalgae-derived biochar possessing highly porous structure, special surface chemical behavior and high thermal stability was found to be efficient in removing malachite green, crystal violet and Congo red. The biochar derived by pyrolysis at 800 °C showed the highest adsorption capacity for malachite green (5306.2 mg g
). In this study, the transformation of microalgae residue into a highly efficient dye adsorbent is a promising procedure for economic and environmental protection. Biochar is known to efficiently adsorb dyes from wastewater. In this study, biochar was derived from macroalgae residue by pyrolysis, and the influence of varying temperature (from 400 °C to 800 °C) on biochar characteristics was investigated. Among the biochar samples tested, macroalgae-derived biochar possessing highly porous structure, special surface chemical behavior and high thermal stability was found to be efficient in removing malachite green, crystal violet and Congo red. The biochar derived by pyrolysis at 800 °C showed the highest adsorption capacity for malachite green (5306.2 mg g-1). In this study, the transformation of microalgae residue into a highly efficient dye adsorbent is a promising procedure for economic and environmental protection.Biochar is known to efficiently adsorb dyes from wastewater. In this study, biochar was derived from macroalgae residue by pyrolysis, and the influence of varying temperature (from 400 °C to 800 °C) on biochar characteristics was investigated. Among the biochar samples tested, macroalgae-derived biochar possessing highly porous structure, special surface chemical behavior and high thermal stability was found to be efficient in removing malachite green, crystal violet and Congo red. The biochar derived by pyrolysis at 800 °C showed the highest adsorption capacity for malachite green (5306.2 mg g-1). In this study, the transformation of microalgae residue into a highly efficient dye adsorbent is a promising procedure for economic and environmental protection. •Macroalgae residue is promising raw material for producing biochar.•Biochar derived from pigments-extracted macroalgae is a promising adsorbent.•The malachite green adsorption capacity of MDBC800 is 5306.2 mg/g. Biochar is known to efficiently adsorb dyes from wastewater. In this study, biochar was derived from macroalgae residue by pyrolysis, and the influence of varying temperature (from 400 °C to 800 °C) on biochar characteristics was investigated. Among the biochar samples tested, macroalgae-derived biochar possessing highly porous structure, special surface chemical behavior and high thermal stability was found to be efficient in removing malachite green, crystal violet and Congo red. The biochar derived by pyrolysis at 800 °C showed the highest adsorption capacity for malachite green (5306.2 mg g−1). In this study, the transformation of microalgae residue into a highly efficient dye adsorbent is a promising procedure for economic and environmental protection. Biochar is known to efficiently adsorb dyes from wastewater. In this study, biochar was derived from macroalgae residue by pyrolysis, and the influence of varying temperature (from 400 °C to 800 °C) on biochar characteristics was investigated. Among the biochar samples tested, macroalgae-derived biochar possessing highly porous structure, special surface chemical behavior and high thermal stability was found to be efficient in removing malachite green, crystal violet and Congo red. The biochar derived by pyrolysis at 800 °C showed the highest adsorption capacity for malachite green (5306.2 mg g−1). In this study, the transformation of microalgae residue into a highly efficient dye adsorbent is a promising procedure for economic and environmental protection. |
| Author | Ren, Nan-qi Zhou, Yan Lin, Yen-Chang Ho, Shih-Hsin Chen, Yi-di |
| Author_xml | – sequence: 1 givenname: Yi-di surname: Chen fullname: Chen, Yi-di organization: State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China – sequence: 2 givenname: Yen-Chang surname: Lin fullname: Lin, Yen-Chang organization: Graduate Institute of Biotechnology, Chinese Culture University, Taipei 1114, Taiwan – sequence: 3 givenname: Shih-Hsin surname: Ho fullname: Ho, Shih-Hsin email: stephen6949@hit.edu.cn organization: State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China – sequence: 4 givenname: Yan surname: Zhou fullname: Zhou, Yan organization: President Office, Harbin Medical University, Harbin 150001, PR China – sequence: 5 givenname: Nan-qi surname: Ren fullname: Ren, Nan-qi organization: State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29536868$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU9r3DAUxEVJaTZpv0LQsRc7-mfZhh5aQtsEAr20ZyFLT7ta7JUraUNd-uErs9lLL-npwfCbeTBzhS4O4QAI3VBSU0Ll7b4efIgZzK5mhHY1YTXpxSu0oV3LK9a38gJtSC9J1TVMXKKrlPaEEE5b9gZdsr7hspPdBv2599vduGBwzhsPh4y1TSHO2YcDDg7bBRIeFly-mZ2O2EL0T2Cxi2HCs99OxZIq-JWjNrnokzYx6HGrAc9LDOPyu4g6Y-udg7jmZ5hmiDofI7xFr50eE7x7vtfox5fP3-_uq8dvXx_uPj1WpiEiV3YgmrUNt7xrpWuoBS3YwHtLpWVOiNb12mgHXd8z6RiTAiy3zBpoZOuI4dfo_Sl3juHnEVJWk08GxlEfIByTYkQ0bS96Qf4DpbztWsZ4QW-e0eMwgVVz9JOOizqXW4APJ6BUklIEp4zPem22tOVHRYlat1R7dd5yje8UYapsWezyH_v5w4vGjycjlE6fPESV1mkNWB_BZGWDfyniL1hlwC8 |
| CitedBy_id | crossref_primary_10_1039_C9RA00378A crossref_primary_10_1007_s10653_020_00804_y crossref_primary_10_1016_j_jhazmat_2020_122435 crossref_primary_10_1007_s11270_020_04875_6 crossref_primary_10_1016_j_scitotenv_2021_145676 crossref_primary_10_1016_j_cjac_2023_100278 crossref_primary_10_1016_j_seppur_2025_134555 crossref_primary_10_1016_j_molliq_2023_121210 crossref_primary_10_1016_j_chemosphere_2022_136115 crossref_primary_10_1007_s11356_022_23947_0 crossref_primary_10_1016_j_heliyon_2022_e12081 crossref_primary_10_1016_j_jclepro_2020_121498 crossref_primary_10_1016_j_molliq_2021_115580 crossref_primary_10_1515_chem_2023_0178 crossref_primary_10_1016_j_biortech_2023_129782 crossref_primary_10_1016_j_enconman_2024_119113 crossref_primary_10_1016_j_surfin_2025_106347 crossref_primary_10_1016_j_biortech_2020_122842 crossref_primary_10_1016_j_biortech_2023_129666 crossref_primary_10_1007_s11270_022_05623_8 crossref_primary_10_1007_s10661_024_12797_7 crossref_primary_10_1016_j_apt_2019_04_026 crossref_primary_10_1080_03067319_2021_1995724 crossref_primary_10_1080_00986445_2020_1865322 crossref_primary_10_3390_polym16182605 crossref_primary_10_1007_s40201_019_00435_1 crossref_primary_10_1007_s13205_023_03766_x crossref_primary_10_1016_j_biortech_2019_01_002 crossref_primary_10_1016_j_cclet_2021_08_054 crossref_primary_10_3390_agriculture14081246 crossref_primary_10_1016_j_jwpe_2024_106670 crossref_primary_10_1007_s12517_018_3790_1 crossref_primary_10_1016_j_jece_2023_111502 crossref_primary_10_3390_ma11091709 crossref_primary_10_1016_j_envpol_2021_118517 crossref_primary_10_3390_app10103492 crossref_primary_10_1002_aoc_7942 crossref_primary_10_3390_nano12111814 crossref_primary_10_1016_j_chemosphere_2024_142382 crossref_primary_10_3390_w15193387 crossref_primary_10_1007_s11356_023_26550_z crossref_primary_10_1016_j_cclet_2020_08_019 crossref_primary_10_1016_j_cclet_2021_04_059 crossref_primary_10_1016_j_envres_2024_118834 crossref_primary_10_1016_j_biortech_2020_122939 crossref_primary_10_1007_s13399_019_00555_6 crossref_primary_10_1080_00986445_2021_1980394 crossref_primary_10_1016_j_biortech_2019_121951 crossref_primary_10_1016_j_rser_2021_111379 crossref_primary_10_3390_app15116173 crossref_primary_10_1016_j_chemosphere_2022_134654 crossref_primary_10_1016_j_jenvman_2018_12_031 crossref_primary_10_1088_1755_1315_1388_1_012024 crossref_primary_10_1016_j_molliq_2021_116617 crossref_primary_10_1016_j_ceramint_2023_05_010 crossref_primary_10_1016_j_jiec_2022_05_047 crossref_primary_10_3390_w12102847 crossref_primary_10_3390_app10217810 crossref_primary_10_1007_s11270_020_04595_x crossref_primary_10_1016_j_jece_2024_113851 crossref_primary_10_1016_j_chemosphere_2021_130676 crossref_primary_10_1016_j_envres_2023_115730 crossref_primary_10_1016_j_seppur_2021_119768 crossref_primary_10_1007_s13399_021_01856_5 crossref_primary_10_1016_j_biteb_2022_101139 crossref_primary_10_3390_catal12080817 crossref_primary_10_1016_j_jhazmat_2019_121071 crossref_primary_10_1016_j_jece_2020_104065 crossref_primary_10_1016_j_chemosphere_2021_132863 crossref_primary_10_1007_s13205_022_03247_7 crossref_primary_10_1016_j_jece_2020_104982 crossref_primary_10_1007_s13399_024_06354_y crossref_primary_10_1080_15435075_2025_2546664 crossref_primary_10_1038_s41598_025_92717_y crossref_primary_10_1080_01496395_2024_2315622 crossref_primary_10_1016_j_chemosphere_2021_130545 crossref_primary_10_1016_j_jece_2023_111263 crossref_primary_10_1007_s13399_021_01636_1 crossref_primary_10_1007_s10311_020_01165_9 crossref_primary_10_1016_j_indcrop_2021_113473 crossref_primary_10_1016_j_clay_2025_107924 crossref_primary_10_1016_j_resconrec_2021_105659 crossref_primary_10_1016_j_chemosphere_2022_136258 crossref_primary_10_1016_j_biortech_2018_05_011 crossref_primary_10_1016_S1872_5805_21_60020_3 crossref_primary_10_3390_coatings13020431 crossref_primary_10_1134_S0040601524700587 crossref_primary_10_1186_s40643_020_00349_z crossref_primary_10_1016_j_ecoenv_2025_118943 crossref_primary_10_1016_j_jhazmat_2021_126921 crossref_primary_10_1016_j_jclepro_2023_138495 crossref_primary_10_1007_s11270_023_06633_w crossref_primary_10_1016_j_biortech_2022_127043 crossref_primary_10_1007_s13762_022_04364_9 crossref_primary_10_1016_j_wmb_2025_100249 crossref_primary_10_1016_j_jece_2023_110866 crossref_primary_10_1016_j_cej_2019_123244 crossref_primary_10_1016_j_jece_2020_104403 crossref_primary_10_1007_s11356_019_05417_2 crossref_primary_10_1016_j_biortech_2023_128840 crossref_primary_10_1016_j_fuel_2021_122447 crossref_primary_10_3390_pr13020589 crossref_primary_10_1016_j_cej_2023_146635 crossref_primary_10_1016_j_jwpe_2024_106051 crossref_primary_10_1007_s10163_022_01391_z crossref_primary_10_1007_s11270_018_4043_3 crossref_primary_10_1016_j_jwpe_2024_106295 crossref_primary_10_1016_j_rineng_2024_103679 crossref_primary_10_1016_j_cec_2024_100117 crossref_primary_10_3390_app14010053 crossref_primary_10_1007_s11356_024_33106_2 crossref_primary_10_1016_j_scitotenv_2020_137015 crossref_primary_10_1016_j_dwt_2024_100801 crossref_primary_10_1016_j_biortech_2020_124082 crossref_primary_10_1016_j_jece_2021_105489 crossref_primary_10_1007_s13399_023_04014_1 crossref_primary_10_1007_s12221_024_00825_9 crossref_primary_10_3390_molecules29194772 crossref_primary_10_1016_j_matchemphys_2022_126173 crossref_primary_10_1016_j_ijleo_2020_164858 crossref_primary_10_1016_j_biortech_2022_127588 crossref_primary_10_1016_j_chemosphere_2022_137733 crossref_primary_10_1016_j_eti_2023_103173 crossref_primary_10_4491_KSEE_2020_42_10_472 crossref_primary_10_1134_S0036024421100289 crossref_primary_10_1016_j_diamond_2021_108795 crossref_primary_10_32604_jrm_2022_020215 crossref_primary_10_1016_j_envpol_2019_06_028 crossref_primary_10_1007_s11270_019_4330_7 crossref_primary_10_1080_00032719_2020_1786696 crossref_primary_10_2166_wpt_2023_233 crossref_primary_10_3390_molecules30163391 crossref_primary_10_3390_molecules24030469 crossref_primary_10_1016_j_biortech_2022_126720 crossref_primary_10_1016_j_envpol_2022_120271 crossref_primary_10_1016_j_chemosphere_2019_125734 crossref_primary_10_1016_j_cej_2024_150032 crossref_primary_10_1016_j_molliq_2023_123016 crossref_primary_10_1007_s10163_025_02201_y crossref_primary_10_1246_cl_190711 crossref_primary_10_3390_su122310048 crossref_primary_10_1142_S1793292024500322 crossref_primary_10_1016_j_chemosphere_2020_128539 crossref_primary_10_1016_j_inoche_2024_112881 crossref_primary_10_3390_agriculture14122165 crossref_primary_10_1002_slct_202404918 crossref_primary_10_1016_j_cej_2022_135253 crossref_primary_10_1016_j_jwpe_2019_100942 crossref_primary_10_3390_su16020495 crossref_primary_10_1016_j_carbpol_2019_115619 crossref_primary_10_1016_j_biortech_2019_121818 crossref_primary_10_1016_j_molliq_2024_126260 crossref_primary_10_1080_03067319_2022_2030321 crossref_primary_10_1007_s10570_022_04615_5 crossref_primary_10_1016_j_chemosphere_2021_130463 crossref_primary_10_1016_j_enconman_2018_08_055 crossref_primary_10_1038_s41598_020_62059_y crossref_primary_10_3390_w13111495 crossref_primary_10_1016_j_watres_2019_05_008 crossref_primary_10_3390_molecules26165063 crossref_primary_10_1016_j_indcrop_2022_115314 crossref_primary_10_1007_s11270_023_06312_w crossref_primary_10_1016_j_ecoenv_2021_112750 crossref_primary_10_1016_j_apsusc_2022_153917 crossref_primary_10_3390_polym14142959 crossref_primary_10_1016_j_biteb_2019_100311 crossref_primary_10_1016_j_carbpol_2018_11_057 crossref_primary_10_1016_j_colsurfa_2025_136726 crossref_primary_10_3390_w15213868 crossref_primary_10_2166_wst_2019_158 crossref_primary_10_1007_s13399_022_03289_0 crossref_primary_10_1016_j_jtice_2022_104231 crossref_primary_10_1080_21655979_2023_2252157 crossref_primary_10_3390_su162411043 crossref_primary_10_1007_s11270_022_05833_0 crossref_primary_10_1016_j_cej_2021_130776 crossref_primary_10_1016_j_wasman_2019_04_053 crossref_primary_10_3390_pr13020556 crossref_primary_10_1016_j_algal_2020_101900 crossref_primary_10_1016_j_envres_2025_122424 crossref_primary_10_1016_j_jhazmat_2020_122764 crossref_primary_10_1016_j_biortech_2020_123614 crossref_primary_10_1016_j_biortech_2023_129904 crossref_primary_10_1016_j_rechem_2025_102603 crossref_primary_10_3390_ma15082824 crossref_primary_10_1016_j_cclet_2022_107755 crossref_primary_10_1016_j_biombioe_2025_107617 crossref_primary_10_1016_j_biortech_2018_10_011 crossref_primary_10_1016_j_matchemphys_2023_127405 crossref_primary_10_1016_j_scitotenv_2022_157511 crossref_primary_10_1016_j_jece_2020_104901 crossref_primary_10_1016_j_jece_2021_106942 crossref_primary_10_1016_j_jenvman_2019_109570 crossref_primary_10_1016_j_envpol_2020_115910 crossref_primary_10_1016_j_molliq_2019_112022 crossref_primary_10_1016_j_indcrop_2023_117590 crossref_primary_10_1016_j_biortech_2019_121578 crossref_primary_10_1016_j_molstruc_2022_133648 crossref_primary_10_1007_s42452_025_07706_7 crossref_primary_10_1061__ASCE_EE_1943_7870_0002009 crossref_primary_10_1016_j_ijhydene_2022_05_051 crossref_primary_10_1016_j_jenvman_2021_113762 crossref_primary_10_1016_j_molliq_2018_12_050 crossref_primary_10_1016_j_biortech_2018_08_037 crossref_primary_10_1590_1980_5373_mr_2025_0179 crossref_primary_10_1007_s00267_023_01866_1 crossref_primary_10_1016_j_clay_2020_105587 crossref_primary_10_3390_separations9060139 crossref_primary_10_1007_s42250_022_00391_8 crossref_primary_10_1016_j_biortech_2023_128830 crossref_primary_10_1016_j_scitotenv_2020_142249 crossref_primary_10_1016_j_biortech_2023_128711 crossref_primary_10_1016_j_jece_2021_107017 crossref_primary_10_1007_s11270_023_06250_7 crossref_primary_10_1155_2023_9993465 crossref_primary_10_1016_j_jclepro_2019_04_005 crossref_primary_10_1186_s40643_021_00387_1 crossref_primary_10_1088_1742_6596_2830_1_012006 |
| Cites_doi | 10.1021/es9031419 10.1016/j.biortech.2009.10.051 10.1016/j.micromeso.2008.01.039 10.1016/j.jhazmat.2017.10.001 10.1016/j.jhazmat.2010.03.041 10.1039/C5TA08627B 10.1016/j.biortech.2011.03.006 10.1016/j.bej.2013.04.001 10.1016/j.watres.2012.01.009 10.1016/j.carbon.2014.05.067 10.1016/j.watres.2014.12.016 10.1016/j.carbon.2014.07.057 10.1016/j.jaap.2015.01.025 10.1021/am403352y 10.1016/j.biortech.2016.03.066 10.1016/j.jece.2017.09.051 10.1016/j.cej.2010.10.048 10.1016/j.cej.2013.10.104 10.1016/j.jhazmat.2016.08.050 10.1016/j.copbio.2017.11.017 10.1021/acssuschemeng.6b03027 10.1016/j.biortech.2016.11.009 10.1016/j.ultsonch.2017.07.030 10.1016/j.jaap.2015.01.010 10.1016/j.biortech.2011.06.078 10.1016/j.jece.2016.12.019 10.1016/j.cej.2006.09.010 10.1016/j.jhazmat.2007.11.093 10.1016/j.cej.2011.01.040 10.1007/s11356-014-3025-2 10.1016/j.biortech.2017.08.025 10.1016/j.watres.2003.12.028 10.1205/095758298529326 10.1016/j.jiec.2014.02.007 10.1016/j.jenvman.2016.07.063 10.1016/j.cej.2014.07.032 10.1016/j.biortech.2017.09.125 10.1016/j.micromeso.2016.09.032 10.1016/j.biortech.2017.05.025 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.biortech.2018.02.094 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Agriculture |
| EISSN | 1873-2976 |
| EndPage | 110 |
| ExternalDocumentID | 29536868 10_1016_j_biortech_2018_02_094 S0960852418302918 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c504t-db0a2753d3876f51dea42b39d16d2f447f9acafe89926f2264ed3d2dce567f0c3 |
| ISICitedReferencesCount | 232 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429820300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-8524 1873-2976 |
| IngestDate | Sat Sep 27 20:50:14 EDT 2025 Sun Sep 28 02:19:59 EDT 2025 Thu Apr 03 07:08:24 EDT 2025 Tue Nov 18 21:56:09 EST 2025 Sat Nov 29 03:26:04 EST 2025 Fri Feb 23 02:19:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Biochar Dyes removal Macroalgae residue |
| Language | English |
| License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c504t-db0a2753d3876f51dea42b39d16d2f447f9acafe89926f2264ed3d2dce567f0c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 29536868 |
| PQID | 2013787223 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2045794940 proquest_miscellaneous_2013787223 pubmed_primary_29536868 crossref_citationtrail_10_1016_j_biortech_2018_02_094 crossref_primary_10_1016_j_biortech_2018_02_094 elsevier_sciencedirect_doi_10_1016_j_biortech_2018_02_094 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-01 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Bioresource technology |
| PublicationTitleAlternate | Bioresour Technol |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Sewu, Boakye, Woo (b0150) 2017; 224 Yuan, Lu, Huang, Zhao, Kobayashi, Chen (b0205) 2015; 112 Chen, Chen, Chen, Chen, Lehmann, Mcbride, Hay (b0015) 2011; 102 Rashid, Rehman, Han (b0130) 2013; 75 Zheng, Zhu, Wang (b0215) 2014; 257 Tang, Yang, Zeng, Cai, Li, Zhou, Pang, Liu, Zhang, Luna (b0175) 2014; 239 Chen, Ho, Wang, Wei, Chang, Ren (b0020) 2018; 247 Fontoura, Rolim, Mella, Farenzena, Gutterres (b0050) 2017; 5 Jung, Jeong, Kang, Ahn (b0085) 2016; 211 Chen, Ho, Nagarajan, Ren, Chang (b0025) 2017; 50 Fan, Wang, Wang, Tang, Tang, Li (b0045) 2017; 5 Nautiyal, Subramanian, Dastidar (b0115) 2016; 182 Tan, Yaxin, Hongtao, Wenjing, Zeyu, Yuancheng, Lulu (b0165) 2014; 164 Piccin, Cadaval, Pinto, Dotto (b0125) 2017 Saeed, Sharif, Iqbal (b0135) 2010; 179 Luo, Fu, Du, Guo, Li (b0110) 2017; 237 Keiluweit, Nico, Johnson, Kleber (b0090) 2010; 44 Wang, Yuan, Zeng, Leng, Peng, Liao, Peng, Xiao (b0185) 2014; 21 Bulut, Özacar, Şengil (b0005) 2008; 115 Sewu, Boakye, Jung, Woo (b0145) 2017; 244 Sharifpour, Khafri, Ghaedi, Asfaram, Jannesar (b0155) 2018 Ho, Chen, Yang, Nagarajan, Chang, Ren (b0060) 2017 Chatterjee, Lee, Woo (b0010) 2010; 101 Luan, Hou, Liu, Shi, Li, Cheng (b0105) 2016; 4 Diagboya, Olu-Owolabi, Zhou, Han (b0040) 2014; 79 Tan, Hameed, Ahmad (b0170) 2007; 127 Zheng, Guo, Li, Chen, Wu, Feng, Yin, Ho, Ren, Chang (b0210) 2017; 244 da Silva, Ruggiero, Gontijo, Pinto, Royer, Lima, Fernandes, Calvete (b0030) 2011; 168 Jin, Li, Zhang, Wu, Cao, Liang, Zhang, Wong, Wang, Shan (b0075) 2016; 320 Jr, Cazetta, Souza, Bedin, Martins, Silva, Almeida (b0080) 2014; 20 Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (b0200) 2011; 102 Lo, Zhang (b0100) 2005; 132 Oliveira, Franca, Alves, Rocha (b0120) 2008; 155 Dawood, Sen (b0035) 2012; 46 Saha, Chowdhury, Gupta, Kumar (b0140) 2010; 165 Weber, Morris (b0190) 1963; 1 Xiao, Dai, Yu, Yu, Zhai, Liu, Guo, Liu, Chen (b0195) 2017; 343 Lee, Pavlostathis (b0095) 2004; 38 Zieliń Ska, Oleszczuk, Charmas, Skubiszewskazieba, Pasiecznapatkowska (b0225) 2015; 112 Tian, Han, Ning, Fang, Ye, Gong, Lin (b0180) 2013; 5 Han, Sani, Mrozik, Obst, Beckingham, Karapanagioti, Werner (b0055) 2015; 70 Ho, McKay (b0065) 1998; 76 Zhu, Liu, Zhou, Luo, Zhang, Chen (b0220) 2014; 77 Štefelová, Slovak, Siqueira, Olsson, Tingaut, Zimmermann, Sehaqui (b0160) 2017; 5 Jin (10.1016/j.biortech.2018.02.094_b0075) 2016; 320 Luo (10.1016/j.biortech.2018.02.094_b0110) 2017; 237 Ho (10.1016/j.biortech.2018.02.094_b0060) 2017 Tan (10.1016/j.biortech.2018.02.094_b0165) 2014; 164 Yao (10.1016/j.biortech.2018.02.094_b0200) 2011; 102 Lee (10.1016/j.biortech.2018.02.094_b0095) 2004; 38 da Silva (10.1016/j.biortech.2018.02.094_b0030) 2011; 168 Chen (10.1016/j.biortech.2018.02.094_b0025) 2017; 50 Tan (10.1016/j.biortech.2018.02.094_b0170) 2007; 127 Wang (10.1016/j.biortech.2018.02.094_b0185) 2014; 21 Lo (10.1016/j.biortech.2018.02.094_b0100) 2005; 132 Štefelová (10.1016/j.biortech.2018.02.094_b0160) 2017; 5 Ho (10.1016/j.biortech.2018.02.094_b0065) 1998; 76 Jr (10.1016/j.biortech.2018.02.094_b0080) 2014; 20 Tang (10.1016/j.biortech.2018.02.094_b0175) 2014; 239 Sewu (10.1016/j.biortech.2018.02.094_b0145) 2017; 244 Zieliń Ska (10.1016/j.biortech.2018.02.094_b0225) 2015; 112 Piccin (10.1016/j.biortech.2018.02.094_b0125) 2017 Sewu (10.1016/j.biortech.2018.02.094_b0150) 2017; 224 Yuan (10.1016/j.biortech.2018.02.094_b0205) 2015; 112 Fontoura (10.1016/j.biortech.2018.02.094_b0050) 2017; 5 Nautiyal (10.1016/j.biortech.2018.02.094_b0115) 2016; 182 Keiluweit (10.1016/j.biortech.2018.02.094_b0090) 2010; 44 Chatterjee (10.1016/j.biortech.2018.02.094_b0010) 2010; 101 Xiao (10.1016/j.biortech.2018.02.094_b0195) 2017; 343 Han (10.1016/j.biortech.2018.02.094_b0055) 2015; 70 Zhu (10.1016/j.biortech.2018.02.094_b0220) 2014; 77 Luan (10.1016/j.biortech.2018.02.094_b0105) 2016; 4 Zheng (10.1016/j.biortech.2018.02.094_b0210) 2017; 244 Weber (10.1016/j.biortech.2018.02.094_b0190) 1963; 1 Bulut (10.1016/j.biortech.2018.02.094_b0005) 2008; 115 Tian (10.1016/j.biortech.2018.02.094_b0180) 2013; 5 Oliveira (10.1016/j.biortech.2018.02.094_b0120) 2008; 155 Fan (10.1016/j.biortech.2018.02.094_b0045) 2017; 5 Diagboya (10.1016/j.biortech.2018.02.094_b0040) 2014; 79 Zheng (10.1016/j.biortech.2018.02.094_b0215) 2014; 257 Dawood (10.1016/j.biortech.2018.02.094_b0035) 2012; 46 Saeed (10.1016/j.biortech.2018.02.094_b0135) 2010; 179 Chen (10.1016/j.biortech.2018.02.094_b0020) 2018; 247 Rashid (10.1016/j.biortech.2018.02.094_b0130) 2013; 75 Sharifpour (10.1016/j.biortech.2018.02.094_b0155) 2018 Chen (10.1016/j.biortech.2018.02.094_b0015) 2011; 102 Saha (10.1016/j.biortech.2018.02.094_b0140) 2010; 165 Jung (10.1016/j.biortech.2018.02.094_b0085) 2016; 211 |
| References_xml | – volume: 101 start-page: 1800 year: 2010 end-page: 1806 ident: b0010 article-title: Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes publication-title: Bioresour. Technol. – volume: 79 start-page: 174 year: 2014 end-page: 182 ident: b0040 article-title: Graphene oxide–tripolyphosphate hybrid used as a potent sorbent for cationic dyes publication-title: Carbon – volume: 75 start-page: 101 year: 2013 end-page: 107 ident: b0130 article-title: Recycling and reuse of spent microalgal biomass for sustainable biofuels publication-title: BioChem. Eng. J. – volume: 343 start-page: 347 year: 2017 ident: b0195 article-title: Effects of sludge thermal-alkaline pretreatment on cationic red X-GRL adsorption onto pyrolysis biochar of sewage sludge publication-title: J. Hazard. Mater. – volume: 1 start-page: 1 year: 1963 end-page: 2 ident: b0190 article-title: Kinetics of adsorption on carbon from solution publication-title: ASCE Sanit. Eng. Div. J. – volume: 5 start-page: 12411 year: 2013 ident: b0180 article-title: Synthesis of porous hierarchical MgO and its superb adsorption properties publication-title: ACS Appl. Mater. Interfaces – volume: 244 start-page: 1456 year: 2017 end-page: 1464 ident: b0210 article-title: Adsorption of p-nitrophenols (PNP) on microalgal biochar: analysis of high adsorption capacity and mechanism publication-title: Bioresour. Technol. – volume: 155 start-page: 507 year: 2008 end-page: 512 ident: b0120 article-title: Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters publication-title: J. Hazard. Mater. – volume: 127 start-page: 111 year: 2007 end-page: 119 ident: b0170 article-title: Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon publication-title: Chem. Eng. J. – volume: 257 start-page: 66 year: 2014 end-page: 73 ident: b0215 article-title: Highly efficient and selective adsorption of malachite green onto granular composite hydrogel publication-title: Chem. Eng. J. – year: 2017 ident: b0125 article-title: Adsorption Isotherms in Liquid Phase: Experimental, Modeling, and Interpretations – volume: 5 start-page: 601 year: 2017 end-page: 611 ident: b0045 article-title: Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, thermodynamics and mechanism publication-title: J. Environ. Chem. Eng. – volume: 211 start-page: 108 year: 2016 ident: b0085 article-title: Characteristics of biochar derived from marine macroalgae and fabrication of granular biochar by entrapment in calcium-alginate beads for phosphate removal from aqueous solution publication-title: Bioresour. Technol. – volume: 70 start-page: 394 year: 2015 end-page: 403 ident: b0055 article-title: Magnetite impregnation effects on the sorbent properties of activated carbons and biochars publication-title: Water. Res. – volume: 5 year: 2017 ident: b0050 article-title: Defatted microalgal biomass as biosorbent for the removal of Acid Blue 161 dye from tannery effluent publication-title: J. Environ Chem. Eng. – volume: 239 start-page: 114 year: 2014 end-page: 122 ident: b0175 article-title: Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study publication-title: Chem. Eng. J. – volume: 320 start-page: 417 year: 2016 end-page: 426 ident: b0075 article-title: Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge publication-title: J. Hazard. Mater. – volume: 112 start-page: 284 year: 2015 end-page: 289 ident: b0205 article-title: Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge publication-title: J. Anal. Appl. Pyrol. – volume: 77 start-page: 627 year: 2014 end-page: 636 ident: b0220 article-title: A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline publication-title: Carbon – volume: 76 start-page: 183 year: 1998 end-page: 191 ident: b0065 article-title: Kinetic models for the sorption of dye from aqueous solution by wood publication-title: Process. Saf. Environ. – volume: 164 start-page: 47 year: 2014 end-page: 54 ident: b0165 article-title: Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge publication-title: Bioresour. Technol. – volume: 102 start-page: 6273 year: 2011 ident: b0200 article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential publication-title: Bioresour. Technol. – start-page: 373 year: 2018 end-page: 382 ident: b0155 article-title: Isotherms and kinetic study of ultrasound-assisted adsorption of malachite green and Pb2+ ions from aqueous samples by copper sulfide nanorods loaded on activated carbon: experimental design optimization publication-title: Ultrason. Sonochem. – volume: 182 start-page: 187 year: 2016 end-page: 197 ident: b0115 article-title: Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: alternate use of waste of biodiesel industry publication-title: J. Environ. Manage. – volume: 112 start-page: 201 year: 2015 end-page: 213 ident: b0225 article-title: Effect of sewage sludge properties on the biochar characteristic publication-title: J. Anal. Appl. Pyrol. – volume: 46 start-page: 1933 year: 2012 end-page: 1946 ident: b0035 article-title: Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design publication-title: Water. Res. – volume: 44 start-page: 1247 year: 2010 end-page: 1253 ident: b0090 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. – volume: 21 start-page: 11552 year: 2014 end-page: 11564 ident: b0185 article-title: Removal of malachite green dye from wastewater by different organic acid-modified natural adsorbent: kinetics, equilibriums, mechanisms, practical application, and disposal of dye-loaded adsorbent publication-title: Environ. Sci. Pollut. Res. – volume: 132 start-page: 1282 year: 2005 end-page: 1288 ident: b0100 article-title: EDTA-enhanced washing for remediation of Pb- and/or Zn-contaminated soils publication-title: J. Environ. Eng. – volume: 20 start-page: 4401 year: 2014 end-page: 4407 ident: b0080 article-title: Adsorption studies of methylene blue onto ZnCl publication-title: J. Ind. Eng. Chem. – volume: 168 start-page: 620 year: 2011 end-page: 628 ident: b0030 article-title: Adsorption of Brilliant Red 2BE dye from water solutions by a chemically modified sugarcane bagasse lignin publication-title: Chem. Eng. J. – volume: 179 start-page: 564 year: 2010 end-page: 572 ident: b0135 article-title: Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption publication-title: J. Hazard. Mater. – volume: 50 start-page: 101 year: 2017 ident: b0025 article-title: Waste biorefineries – integrating anaerobic digestion and microalgae cultivation for bioenergy production publication-title: Curr. Opin. Biotechnol. – volume: 247 start-page: 463 year: 2018 end-page: 470 ident: b0020 article-title: Lead removal by a magnetic biochar derived from persulfate-ZVI treated sludge together with one-pot pyrolysis publication-title: Bioresour. Technol. – volume: 244 year: 2017 ident: b0145 article-title: Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonica publication-title: Bioresour. Technol. – volume: 5 year: 2017 ident: b0160 article-title: Drying and pyrolysis of cellulose nanofibers from wood, bacteria and algae for char application in oil absorption and dyes adsorption. publication-title: ACS Sustainable Chem. Eng. – volume: 165 start-page: 874 year: 2010 end-page: 882 ident: b0140 article-title: Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin publication-title: Chem. Eng. J. – volume: 237 start-page: 268 year: 2017 end-page: 274 ident: b0110 article-title: Adsorption of methylene blue and malachite green from aqueous solution by sulfonic acid group modified MIL-101 publication-title: Microporous Mesoporous Mater. – volume: 102 start-page: 8877 year: 2011 ident: b0015 article-title: Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution publication-title: Bioresour. Technol. – volume: 224 start-page: 206 year: 2017 end-page: 213 ident: b0150 article-title: Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste publication-title: Bioresour. Technol. – volume: 115 start-page: 234 year: 2008 end-page: 246 ident: b0005 article-title: Adsorption of malachite green onto bentonite: equilibrium and kinetic studies and process design publication-title: Microporous Mesoporous Mater. – year: 2017 ident: b0060 article-title: High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge publication-title: Bioresour. Technol. – volume: 38 start-page: 1838 year: 2004 end-page: 1852 ident: b0095 article-title: Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions publication-title: Water. Res. – volume: 4 start-page: 1191 year: 2016 end-page: 1194 ident: b0105 article-title: Efficient adsorption of organic dyes on a flexible single-wall carbon nanotube film publication-title: J. Mater. Chem. A – volume: 44 start-page: 1247 issue: 4 year: 2010 ident: 10.1016/j.biortech.2018.02.094_b0090 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es9031419 – volume: 101 start-page: 1800 issue: 6 year: 2010 ident: 10.1016/j.biortech.2018.02.094_b0010 article-title: Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.10.051 – volume: 115 start-page: 234 issue: 3 year: 2008 ident: 10.1016/j.biortech.2018.02.094_b0005 article-title: Adsorption of malachite green onto bentonite: equilibrium and kinetic studies and process design publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2008.01.039 – volume: 343 start-page: 347 year: 2017 ident: 10.1016/j.biortech.2018.02.094_b0195 article-title: Effects of sludge thermal-alkaline pretreatment on cationic red X-GRL adsorption onto pyrolysis biochar of sewage sludge publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.10.001 – volume: 179 start-page: 564 issue: 1 year: 2010 ident: 10.1016/j.biortech.2018.02.094_b0135 article-title: Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.03.041 – volume: 132 start-page: 1282 issue: 10 year: 2005 ident: 10.1016/j.biortech.2018.02.094_b0100 article-title: EDTA-enhanced washing for remediation of Pb- and/or Zn-contaminated soils publication-title: J. Environ. Eng. – volume: 4 start-page: 1191 issue: 4 year: 2016 ident: 10.1016/j.biortech.2018.02.094_b0105 article-title: Efficient adsorption of organic dyes on a flexible single-wall carbon nanotube film publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08627B – volume: 164 start-page: 47 issue: 7 year: 2014 ident: 10.1016/j.biortech.2018.02.094_b0165 article-title: Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge publication-title: Bioresour. Technol. – volume: 102 start-page: 6273 issue: 10 year: 2011 ident: 10.1016/j.biortech.2018.02.094_b0200 article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.03.006 – volume: 75 start-page: 101 issue: suppl. C year: 2013 ident: 10.1016/j.biortech.2018.02.094_b0130 article-title: Recycling and reuse of spent microalgal biomass for sustainable biofuels publication-title: BioChem. Eng. J. doi: 10.1016/j.bej.2013.04.001 – volume: 46 start-page: 1933 issue: 6 year: 2012 ident: 10.1016/j.biortech.2018.02.094_b0035 article-title: Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design publication-title: Water. Res. doi: 10.1016/j.watres.2012.01.009 – volume: 77 start-page: 627 issue: 10 year: 2014 ident: 10.1016/j.biortech.2018.02.094_b0220 article-title: A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline publication-title: Carbon doi: 10.1016/j.carbon.2014.05.067 – volume: 70 start-page: 394 year: 2015 ident: 10.1016/j.biortech.2018.02.094_b0055 article-title: Magnetite impregnation effects on the sorbent properties of activated carbons and biochars publication-title: Water. Res. doi: 10.1016/j.watres.2014.12.016 – volume: 79 start-page: 174 issue: 79 year: 2014 ident: 10.1016/j.biortech.2018.02.094_b0040 article-title: Graphene oxide–tripolyphosphate hybrid used as a potent sorbent for cationic dyes publication-title: Carbon doi: 10.1016/j.carbon.2014.07.057 – volume: 112 start-page: 201 year: 2015 ident: 10.1016/j.biortech.2018.02.094_b0225 article-title: Effect of sewage sludge properties on the biochar characteristic publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2015.01.025 – volume: 5 start-page: 12411 issue: 23 year: 2013 ident: 10.1016/j.biortech.2018.02.094_b0180 article-title: Synthesis of porous hierarchical MgO and its superb adsorption properties publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am403352y – volume: 211 start-page: 108 year: 2016 ident: 10.1016/j.biortech.2018.02.094_b0085 article-title: Characteristics of biochar derived from marine macroalgae and fabrication of granular biochar by entrapment in calcium-alginate beads for phosphate removal from aqueous solution publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.03.066 – volume: 5 issue: 5 year: 2017 ident: 10.1016/j.biortech.2018.02.094_b0050 article-title: Defatted microalgal biomass as biosorbent for the removal of Acid Blue 161 dye from tannery effluent publication-title: J. Environ Chem. Eng. doi: 10.1016/j.jece.2017.09.051 – volume: 165 start-page: 874 issue: 3 year: 2010 ident: 10.1016/j.biortech.2018.02.094_b0140 article-title: Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.10.048 – volume: 239 start-page: 114 issue: 1 year: 2014 ident: 10.1016/j.biortech.2018.02.094_b0175 article-title: Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.10.104 – volume: 320 start-page: 417 year: 2016 ident: 10.1016/j.biortech.2018.02.094_b0075 article-title: Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.08.050 – volume: 50 start-page: 101 year: 2017 ident: 10.1016/j.biortech.2018.02.094_b0025 article-title: Waste biorefineries – integrating anaerobic digestion and microalgae cultivation for bioenergy production publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2017.11.017 – volume: 5 issue: 3 year: 2017 ident: 10.1016/j.biortech.2018.02.094_b0160 article-title: Drying and pyrolysis of cellulose nanofibers from wood, bacteria and algae for char application in oil absorption and dyes adsorption. publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b03027 – volume: 224 start-page: 206 issue: suppl. C year: 2017 ident: 10.1016/j.biortech.2018.02.094_b0150 article-title: Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.11.009 – start-page: 373 year: 2018 ident: 10.1016/j.biortech.2018.02.094_b0155 article-title: Isotherms and kinetic study of ultrasound-assisted adsorption of malachite green and Pb2+ ions from aqueous samples by copper sulfide nanorods loaded on activated carbon: experimental design optimization publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.07.030 – volume: 112 start-page: 284 year: 2015 ident: 10.1016/j.biortech.2018.02.094_b0205 article-title: Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2015.01.010 – volume: 102 start-page: 8877 issue: 19 year: 2011 ident: 10.1016/j.biortech.2018.02.094_b0015 article-title: Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.06.078 – volume: 5 start-page: 601 issue: 1 year: 2017 ident: 10.1016/j.biortech.2018.02.094_b0045 article-title: Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, thermodynamics and mechanism publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2016.12.019 – volume: 127 start-page: 111 issue: 1 year: 2007 ident: 10.1016/j.biortech.2018.02.094_b0170 article-title: Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2006.09.010 – volume: 155 start-page: 507 issue: 3 year: 2008 ident: 10.1016/j.biortech.2018.02.094_b0120 article-title: Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.11.093 – volume: 168 start-page: 620 issue: 2 year: 2011 ident: 10.1016/j.biortech.2018.02.094_b0030 article-title: Adsorption of Brilliant Red 2BE dye from water solutions by a chemically modified sugarcane bagasse lignin publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.01.040 – volume: 1 start-page: 1 issue: 2 year: 1963 ident: 10.1016/j.biortech.2018.02.094_b0190 article-title: Kinetics of adsorption on carbon from solution publication-title: ASCE Sanit. Eng. Div. J. – year: 2017 ident: 10.1016/j.biortech.2018.02.094_b0125 – volume: 21 start-page: 11552 issue: 19 year: 2014 ident: 10.1016/j.biortech.2018.02.094_b0185 article-title: Removal of malachite green dye from wastewater by different organic acid-modified natural adsorbent: kinetics, equilibriums, mechanisms, practical application, and disposal of dye-loaded adsorbent publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3025-2 – year: 2017 ident: 10.1016/j.biortech.2018.02.094_b0060 article-title: High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.08.025 – volume: 38 start-page: 1838 issue: 7 year: 2004 ident: 10.1016/j.biortech.2018.02.094_b0095 article-title: Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions publication-title: Water. Res. doi: 10.1016/j.watres.2003.12.028 – volume: 76 start-page: 183 issue: 2 year: 1998 ident: 10.1016/j.biortech.2018.02.094_b0065 article-title: Kinetic models for the sorption of dye from aqueous solution by wood publication-title: Process. Saf. Environ. doi: 10.1205/095758298529326 – volume: 244 issue: Pt 1 year: 2017 ident: 10.1016/j.biortech.2018.02.094_b0145 article-title: Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonica publication-title: Bioresour. Technol. – volume: 20 start-page: 4401 issue: 6 year: 2014 ident: 10.1016/j.biortech.2018.02.094_b0080 article-title: Adsorption studies of methylene blue onto ZnCl2-activated carbon produced from buriti shells (Mauritia flexuosa L.) publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2014.02.007 – volume: 182 start-page: 187 year: 2016 ident: 10.1016/j.biortech.2018.02.094_b0115 article-title: Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: alternate use of waste of biodiesel industry publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.07.063 – volume: 257 start-page: 66 issue: 6 year: 2014 ident: 10.1016/j.biortech.2018.02.094_b0215 article-title: Highly efficient and selective adsorption of malachite green onto granular composite hydrogel publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.07.032 – volume: 247 start-page: 463 issue: suppl. C year: 2018 ident: 10.1016/j.biortech.2018.02.094_b0020 article-title: Lead removal by a magnetic biochar derived from persulfate-ZVI treated sludge together with one-pot pyrolysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.125 – volume: 237 start-page: 268 year: 2017 ident: 10.1016/j.biortech.2018.02.094_b0110 article-title: Adsorption of methylene blue and malachite green from aqueous solution by sulfonic acid group modified MIL-101 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2016.09.032 – volume: 244 start-page: 1456 issue: Part 2 year: 2017 ident: 10.1016/j.biortech.2018.02.094_b0210 article-title: Adsorption of p-nitrophenols (PNP) on microalgal biochar: analysis of high adsorption capacity and mechanism publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.05.025 |
| SSID | ssj0003172 |
| Score | 2.6410494 |
| Snippet | •Macroalgae residue is promising raw material for producing biochar.•Biochar derived from pigments-extracted macroalgae is a promising adsorbent.•The malachite... Biochar is known to efficiently adsorb dyes from wastewater. In this study, biochar was derived from macroalgae residue by pyrolysis, and the influence of... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 104 |
| SubjectTerms | adsorbents adsorption Biochar Dyes removal environmental protection gentian violet macroalgae Macroalgae residue malachite green microalgae pyrolysis temperature thermal stability wastewater |
| Title | Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature |
| URI | https://dx.doi.org/10.1016/j.biortech.2018.02.094 https://www.ncbi.nlm.nih.gov/pubmed/29536868 https://www.proquest.com/docview/2013787223 https://www.proquest.com/docview/2045794940 |
| Volume | 259 |
| WOSCitedRecordID | wos000429820300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6Dgl4QDBu5TIZCfESBXJt7Meq6jTQNJDopI6XyImdNVNJQppWK-Jf8Ic5Thy3Uzc2HniJIsdOHJ8vxyf2Od9B6K0dw7zEAs-MIipMT8gzMARMx_aS2PYJ8wWvk00Ex8dkMqFfOp3fbSzMchZkGbm4oMV_FTWUgbBl6Ow_iFvfFArgHIQORxA7HG8leOm5MVtJR420DnY0GJ_nZdFahnwl5tLmjNJcRlwZHPq0BKuzjjMp0rM65M0ElV3zOHPjOwNVLQM-hFGsyny2-gmFrNKZVSpDslspauZLW8RpXqq9AaPaWsAfqqiQ09TkqfYKaggNTkVm1lEPGnP1eu7XaTo1D-ephvO3ab6o6yuEq8ULm2hH11bfkkCmkgsUG_YVZUpJO4o3vFGzKmXxlvpvViLO38MQlvLNpOseqTlZm0zKl_m2jz-HBydHR-F4NBm_K36YMhWZ3LJXeVl20K4T-JR00e7g42jySU_wYHLVm-htPzcCz69-9HU2z3X_NLVtM36IHqifEjxowPQIdUS2h-4PzkpFzCL20N1hmxkQrmyQWD5GvxrAYQ04vAYczhMsAYejFVaAwwpwWAIObwMOrwGHNeAwq7AGHN4A3BN0cjAaDw9NldPDjH3Lq0weWQxG1eUuTMOJb3PBPCdyKbf73Ek8L0goi1kiCKVOP5FR3oK73OGx8PtBYsXuU9TN8kw8R9i3-nHkUcGcKPAoE8xyoCoNfCFA0VDSQ3476mGsCO9l3pVZ2Ho2noettEIprdByQpBWD33Q7YqG8uXGFrQVaqgM18YgDQGYN7Z906IgBDHK7TqWiXwxl5VcmE7Bfv9bHc-HGZV6Vg89ayCk--xIzwzSJy9u8YSX6N7683yFulW5EK_RnXhZpfNyH-0EE7KvPoM_Mu_ivQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+adsorption+of+dyes+by+biochar+derived+from+pigments-extracted+macroalgae+pyrolyzed+at+different+temperature&rft.jtitle=Bioresource+technology&rft.au=Chen%2C+Yi-di&rft.au=Lin%2C+Yen-Chang&rft.au=Ho%2C+Shih-Hsin&rft.au=Zhou%2C+Yan&rft.date=2018-07-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=259&rft.spage=104&rft_id=info:doi/10.1016%2Fj.biortech.2018.02.094&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |