On natural deduction in classical first-order logic: Curry–Howard correspondence, strong normalization and Herbrand's theorem

We present a new Curry–Howard correspondence for classical first-order natural deduction. We add to the lambda calculus an operator which represents, from the viewpoint of programming, a mechanism for raising and catching multiple exceptions, and from the viewpoint of logic, the excluded middle over...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science Jg. 625; S. 125 - 146
Hauptverfasser: Aschieri, Federico, Zorzi, Margherita
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 25.04.2016
Elsevier
Schlagworte:
ISSN:0304-3975, 1879-2294
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new Curry–Howard correspondence for classical first-order natural deduction. We add to the lambda calculus an operator which represents, from the viewpoint of programming, a mechanism for raising and catching multiple exceptions, and from the viewpoint of logic, the excluded middle over arbitrary prenex formulas. The machinery will allow to extend the idea of learning – originally developed in Arithmetic – to pure logic. We prove that our typed calculus is strongly normalizing and show that proof terms for simply existential statements reduce to a list of individual terms forming an Herbrand disjunction. A by-product of our approach is a natural-deduction proof and a computational interpretation of Herbrand's Theorem.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2016.02.028