On natural deduction in classical first-order logic: Curry–Howard correspondence, strong normalization and Herbrand's theorem
We present a new Curry–Howard correspondence for classical first-order natural deduction. We add to the lambda calculus an operator which represents, from the viewpoint of programming, a mechanism for raising and catching multiple exceptions, and from the viewpoint of logic, the excluded middle over...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 625; s. 125 - 146 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
25.04.2016
Elsevier |
| Témata: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present a new Curry–Howard correspondence for classical first-order natural deduction. We add to the lambda calculus an operator which represents, from the viewpoint of programming, a mechanism for raising and catching multiple exceptions, and from the viewpoint of logic, the excluded middle over arbitrary prenex formulas. The machinery will allow to extend the idea of learning – originally developed in Arithmetic – to pure logic. We prove that our typed calculus is strongly normalizing and show that proof terms for simply existential statements reduce to a list of individual terms forming an Herbrand disjunction. A by-product of our approach is a natural-deduction proof and a computational interpretation of Herbrand's Theorem. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2016.02.028 |