Big Data: New Tricks for Econometrics

Computers are now involved in many economic transactions and can capture data associated with these transactions, which can then be manipulated and analyzed. Conventional statistical and econometric techniques such as regression often work well, but there are issues unique to big datasets that may r...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of economic perspectives Vol. 28; no. 2; pp. 3 - 27
Main Author: Varian, Hal R.
Format: Journal Article
Language:English
Published: Nashville American Economic Association 01.04.2014
Subjects:
ISSN:0895-3309, 1944-7965
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Computers are now involved in many economic transactions and can capture data associated with these transactions, which can then be manipulated and analyzed. Conventional statistical and econometric techniques such as regression often work well, but there are issues unique to big datasets that may require different tools. First, the sheer size of the data involved may require more powerful data manipulation tools. Second, we may have more potential predictors than appropriate for estimation, so we need to do some kind of variable selection. Third, large datasets may allow for more flexible relationships than simple linear models. Machine learning techniques such as decision trees, support vector machines, neural nets, deep learning, and so on may allow for more effective ways to model complex relationships. In this essay, I will describe a few of these tools for manipulating and analyzing big data. I believe that these methods have a lot to offer and should be more widely known and used by economists.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0895-3309
1944-7965
DOI:10.1257/jep.28.2.3