Single Crystal-Like Performance in Solution-Coated Thin-Film Organic Field-Effect Transistors

In electronics, the field‐effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications requires stable and ideal electrical characteristics over a wide range of temperatures and environments. Solution processing, using printing or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials Jg. 26; H. 14; S. 2379 - 2386
Hauptverfasser: del Pozo, Freddy G., Fabiano, Simone, Pfattner, Raphael, Georgakopoulos, Stamatis, Galindo, Sergi, Liu, Xianjie, Braun, Slawomir, Fahlman, Mats, Veciana, Jaume, Rovira, Concepció, Crispin, Xavier, Berggren, Magnus, Mas-Torrent, Marta
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Blackwell Publishing Ltd 12.04.2016
Schlagworte:
ISSN:1616-301X, 1616-3028, 1616-3028
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In electronics, the field‐effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications requires stable and ideal electrical characteristics over a wide range of temperatures and environments. Solution processing, using printing or coating techniques, has been explored to manufacture organic field‐effect transistors (OFET) on flexible carriers, enabling radically novel electronics applications. Ideal electrical characteristics, in organic materials, are typically only found in single crystals. Tiresome growth and manipulation of these hamper practical production of flexible OFETs circuits. To date, neither devices nor any circuits, based on solution‐processed OFETs, has exhibited an ideal set of characteristics similar or better than today's FET technology based on amorphous silicon. Here, bar‐assisted meniscus shearing of dibenzo‐tetrathiafulvalene to coat‐process self‐organized crystalline organic semiconducting domains with high reproducibility is reported. Including these coatings as the channel in OFETs, electric field and temperature‐independent charge carrier mobility and no bias stress effects are observed. Furthermore, record‐high gain in OFET inverters and exceptional operational stability in both air and water are measured. Bar‐assisted meniscus shearing of dibenzo‐tetrathiafulvalene is used to coat‐process self‐organized crystalline organic semiconducting domains with high reproducibility for organic field‐effect transistors (OFETs). Electric field and temperature‐independent charge carrier mobility as well as no bias stress effects are observed in these devices. A record‐high gain in OFET inverters and exceptional operational stability in both air and water is demonstrated.
AbstractList In electronics, the field-effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications requires stable and ideal electrical characteristics over a wide range of temperatures and environments. Solution processing, using printing or coating techniques, has been explored to manufacture organic field-effect transistors (OFET) on flexible carriers, enabling radically novel electronics applications. Ideal electrical characteristics, in organic materials, are typically only found in single crystals. Tiresome growth and manipulation of these hamper practical production of flexible OFETs circuits. To date, neither devices nor any circuits, based on solution-processed OFETs, has exhibited an ideal set of characteristics similar or better than todays FET technology based on amorphous silicon. Here, bar-assisted meniscus shearing of dibenzo-tetrathiafulvalene to coat-process self-organized crystalline organic semiconducting domains with high reproducibility is reported. Including these coatings as the channel in OFETs, electric field and temperature-independent charge carrier mobility and no bias stress effects are observed. Furthermore, record-high gain in OFET inverters and exceptional operational stability in both air and water are measured.
In electronics, the field‐effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications requires stable and ideal electrical characteristics over a wide range of temperatures and environments. Solution processing, using printing or coating techniques, has been explored to manufacture organic field‐effect transistors (OFET) on flexible carriers, enabling radically novel electronics applications. Ideal electrical characteristics, in organic materials, are typically only found in single crystals. Tiresome growth and manipulation of these hamper practical production of flexible OFETs circuits. To date, neither devices nor any circuits, based on solution‐processed OFETs, has exhibited an ideal set of characteristics similar or better than today's FET technology based on amorphous silicon. Here, bar‐assisted meniscus shearing of dibenzo‐tetrathiafulvalene to coat‐process self‐organized crystalline organic semiconducting domains with high reproducibility is reported. Including these coatings as the channel in OFETs, electric field and temperature‐independent charge carrier mobility and no bias stress effects are observed. Furthermore, record‐high gain in OFET inverters and exceptional operational stability in both air and water are measured. Bar‐assisted meniscus shearing of dibenzo‐tetrathiafulvalene is used to coat‐process self‐organized crystalline organic semiconducting domains with high reproducibility for organic field‐effect transistors (OFETs). Electric field and temperature‐independent charge carrier mobility as well as no bias stress effects are observed in these devices. A record‐high gain in OFET inverters and exceptional operational stability in both air and water is demonstrated.
In electronics, the field-effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications requires stable and ideal electrical characteristics over a wide range of temperatures and environments. Solution processing, using printing or coating techniques, has been explored to manufacture organic field-effect transistors (OFET) on flexible carriers, enabling radically novel electronics applications. Ideal electrical characteristics, in organic materials, are typically only found in single crystals. Tiresome growth and manipulation of these hamper practical production of flexible OFETs circuits. To date, neither devices nor any circuits, based on solution-processed OFETs, has exhibited an ideal set of characteristics similar or better than today's FET technology based on amorphous silicon. Here, bar-assisted meniscus shearing of dibenzo-tetrathiafulvalene to coat-process self-organized crystalline organic semiconducting domains with high reproducibility is reported. Including these coatings as the channel in OFETs, electric field and temperature-independent charge carrier mobility and no bias stress effects are observed. Furthermore, record-high gain in OFET inverters and exceptional operational stability in both air and water are measured. Bar-assisted meniscus shearing of dibenzo-tetrathiafulvalene is used to coat-process self-organized crystalline organic semiconducting domains with high reproducibility for organic field-effect transistors (OFETs). Electric field and temperature-independent charge carrier mobility as well as no bias stress effects are observed in these devices. A record-high gain in OFET inverters and exceptional operational stability in both air and water is demonstrated.
In electronics, the field‐effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications requires stable and ideal electrical characteristics over a wide range of temperatures and environments. Solution processing, using printing or coating techniques, has been explored to manufacture organic field‐effect transistors (OFET) on flexible carriers, enabling radically novel electronics applications. Ideal electrical characteristics, in organic materials, are typically only found in single crystals. Tiresome growth and manipulation of these hamper practical production of flexible OFETs circuits. To date, neither devices nor any circuits, based on solution‐processed OFETs, has exhibited an ideal set of characteristics similar or better than today's FET technology based on amorphous silicon. Here, bar‐assisted meniscus shearing of dibenzo‐tetrathiafulvalene to coat‐process self‐organized crystalline organic semiconducting domains with high reproducibility is reported. Including these coatings as the channel in OFETs, electric field and temperature‐independent charge carrier mobility and no bias stress effects are observed. Furthermore, record‐high gain in OFET inverters and exceptional operational stability in both air and water are measured.
Author Georgakopoulos, Stamatis
Liu, Xianjie
Fahlman, Mats
del Pozo, Freddy G.
Fabiano, Simone
Veciana, Jaume
Galindo, Sergi
Braun, Slawomir
Mas-Torrent, Marta
Berggren, Magnus
Rovira, Concepció
Crispin, Xavier
Pfattner, Raphael
Author_xml – sequence: 1
  givenname: Freddy G.
  surname: del Pozo
  fullname: del Pozo, Freddy G.
  organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, 08193, Bellaterra, Spain
– sequence: 2
  givenname: Simone
  surname: Fabiano
  fullname: Fabiano, Simone
  organization: Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
– sequence: 3
  givenname: Raphael
  surname: Pfattner
  fullname: Pfattner, Raphael
  organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, 08193, Bellaterra, Spain
– sequence: 4
  givenname: Stamatis
  surname: Georgakopoulos
  fullname: Georgakopoulos, Stamatis
  organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, 08193, Bellaterra, Spain
– sequence: 5
  givenname: Sergi
  surname: Galindo
  fullname: Galindo, Sergi
  organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, 08193, Bellaterra, Spain
– sequence: 6
  givenname: Xianjie
  surname: Liu
  fullname: Liu, Xianjie
  organization: Department of Physics, Chemistry, and Biology, Linköping University, SE-581 83, Linköping, Sweden
– sequence: 7
  givenname: Slawomir
  surname: Braun
  fullname: Braun, Slawomir
  organization: Department of Physics, Chemistry, and Biology, Linköping University, SE-581 83, Linköping, Sweden
– sequence: 8
  givenname: Mats
  surname: Fahlman
  fullname: Fahlman, Mats
  organization: Department of Physics, Chemistry, and Biology, Linköping University, SE-581 83, Linköping, Sweden
– sequence: 9
  givenname: Jaume
  surname: Veciana
  fullname: Veciana, Jaume
  organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, 08193, Bellaterra, Spain
– sequence: 10
  givenname: Concepció
  surname: Rovira
  fullname: Rovira, Concepció
  organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, 08193, Bellaterra, Spain
– sequence: 11
  givenname: Xavier
  surname: Crispin
  fullname: Crispin, Xavier
  organization: Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
– sequence: 12
  givenname: Magnus
  surname: Berggren
  fullname: Berggren, Magnus
  email: mmas@icmab.es
  organization: Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
– sequence: 13
  givenname: Marta
  surname: Mas-Torrent
  fullname: Mas-Torrent, Marta
  email: mmas@icmab.es
  organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, 08193, Bellaterra, Spain
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127774$$DView record from Swedish Publication Index (Linköpings universitet)
BookMark eNqFkE1vEzEQQFeoSLSFK-c9cnEYe712OEZpU1BTCjR8CAlZXu84mHrtYO-qzb9no5QIISFO48N71sw7KY5CDFgUzylMKAB7qVvbTRjQGhiT_FFxTAUVpAI2PTq86ZcnxUnOPwColBU_Lr7duLD2WM7TNvfak6W7xfIdJhtTp4PB0oXyJvqhdzGQedQ9tuXquwtk4XxXXqe1Ds6UC4e-JefWounLVdIhu9zHlJ8Wj632GZ89zNPi4-J8NX9NltcXb-azJTE1cE44MiqpZq3mooHKAm_rtpGWQ8MEyMYASlGxlkHFmWGtEKymHKTV4xnWsuq0IPt_8x1uhkZtkut02qqonTpzn2YqprXyblCUSSn5yL_Y85sUfw6Ye9W5bNB7HTAOWdEpTKHmQk5HlO9Rk2LOCa0yrte7HH3SzisKaldf7eqrQ_1Rm_yl_d7pn8KrvXDnPG7_Q6vZ2eLqT_fh_LE63h9cnW6VkJWs1ee3F4rXl7K-_Ppefah-Ad9HqIo
CitedBy_id crossref_primary_10_1002_adfm_201703443
crossref_primary_10_1016_j_synthmet_2018_11_021
crossref_primary_10_1002_admt_202101535
crossref_primary_10_1002_aelm_201700326
crossref_primary_10_1039_D2NR05625A
crossref_primary_10_1039_D2TC05066H
crossref_primary_10_1002_admi_201900719
crossref_primary_10_1002_aelm_201600556
crossref_primary_10_1002_adfm_201905963
crossref_primary_10_1002_adfm_202410763
crossref_primary_10_1002_adfm_202006115
crossref_primary_10_1016_j_bios_2020_112433
crossref_primary_10_1007_s40042_025_01467_7
crossref_primary_10_1038_s41467_020_15974_7
crossref_primary_10_1002_adfm_201700526
crossref_primary_10_1002_adma_201602479
crossref_primary_10_1002_adfm_201904590
crossref_primary_10_1002_admi_202200815
crossref_primary_10_1103_PhysRevApplied_8_014001
crossref_primary_10_1039_D4TC05403B
crossref_primary_10_1002_aelm_202400134
crossref_primary_10_1002_adfm_201807786
crossref_primary_10_1007_s11051_020_04975_8
crossref_primary_10_1021_acs_cgd_5c00046
crossref_primary_10_1002_adom_201901643
crossref_primary_10_1016_j_dyepig_2019_107847
crossref_primary_10_1002_aelm_202400887
crossref_primary_10_1063_1_4981774
crossref_primary_10_1016_j_synthmet_2019_01_001
crossref_primary_10_3389_fchem_2021_698246
crossref_primary_10_1002_adfm_202405171
crossref_primary_10_1002_aelm_202000431
crossref_primary_10_1038_s41578_019_0127_y
crossref_primary_10_1002_admt_201900104
crossref_primary_10_1002_smll_202006043
crossref_primary_10_1016_j_apsusc_2018_04_097
crossref_primary_10_1002_adfm_202202071
crossref_primary_10_1002_aelm_201700349
crossref_primary_10_1002_adfm_201706372
crossref_primary_10_1002_admt_201600090
crossref_primary_10_1038_srep39623
crossref_primary_10_1002_aelm_201700157
crossref_primary_10_1002_aelm_201700271
crossref_primary_10_1002_aelm_202200293
crossref_primary_10_1002_adfm_201703899
crossref_primary_10_1039_C6CP08685C
crossref_primary_10_1063_5_0059735
crossref_primary_10_1016_j_orgel_2017_06_020
crossref_primary_10_1007_s42114_024_01025_y
crossref_primary_10_1016_j_mssp_2018_12_022
crossref_primary_10_1016_j_bios_2019_111844
crossref_primary_10_1002_adma_201704695
crossref_primary_10_1002_aelm_201800141
crossref_primary_10_1002_aelm_201800381
crossref_primary_10_1002_pssr_202100602
crossref_primary_10_1002_admi_202101679
crossref_primary_10_1109_LED_2019_2950345
crossref_primary_10_1002_smll_202300151
crossref_primary_10_1002_admi_201900950
crossref_primary_10_1016_j_polymer_2020_122208
crossref_primary_10_1007_s13233_021_9009_4
crossref_primary_10_1002_aelm_201800339
Cites_doi 10.1002/adma.201002682
10.1016/j.cplett.2011.12.026
10.1002/adma.201200859
10.1038/ncomms3238
10.1038/nmat2825
10.1039/C4EE00688G
10.1039/c2cs35074b
10.1063/1.121205
10.1038/nmat3650
10.1103/PhysRevB.39.1164
10.1063/1.1848179
10.1007/978-94-009-4858-7_7
10.1103/PhysRevB.81.035327
10.1002/adma.201401520
10.1038/nmat2570
10.1039/b810993a
10.1002/adma.201001865
10.1039/c2jm32561f
10.1063/1.3050525
10.1021/cr0501543
10.1038/srep03947
10.1063/1.373091
10.1038/nature13854
10.1038/nature10313
10.1103/PhysRevLett.93.086802
10.1051/jp3:1995132
10.1038/ncomms1721
10.1002/adma.200903559
10.1039/c4cp02413c
10.1021/ja067879o
10.1126/science.1094196
10.1063/1.98751
10.1002/adma.201104580
10.1021/la9502251
10.1002/adma.200801725
10.1073/pnas.0802105105
10.1016/S1369-7021(07)70016-0
10.1063/1.2940593
10.1021/cr100142w
10.1016/0038-1098(89)90879-X
10.1103/PhysRevB.80.245305
10.1016/0038-1098(87)91050-7
10.1063/1.343361
10.1002/adma.200803207
10.1021/la2006138
10.1038/ncomms2587
10.1109/LED.2004.825154
10.1002/adma.201103960
10.1021/nn305903q
10.1002/adma.201300886
10.1038/ncomms4573
10.1103/PhysRevLett.93.086602
10.1016/j.orgel.2008.08.011
10.1088/0957-4484/18/42/424009
10.1021/ja051755e
10.1002/adma.200903193
10.1016/j.jcis.2010.01.010
10.1039/c1cp21507h
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOI 10.1002/adfm.201502274
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList

Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 2386
ExternalDocumentID oai_DiVA_org_liu_127774
10_1002_adfm_201502274
ADFM201502274
ark_67375_WNG_45K75KZQ_R
Genre article
GrantInformation_xml – fundername: Önnesjö Foundation
– fundername: Swedish Foundation for Strategic Research
– fundername: Secretaría de Educación Superior, Ciencia, Tecnología e Innovación
– fundername: Advanced Functional Materials Center at Linköping University
– fundername: Knut and Alice Wallenberg Foundation
– fundername: Universidad Técnica de Ambato
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
AAYXX
CITATION
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
ID FETCH-LOGICAL-c5044-4e2171a2da46b03f04d5db7f40b2607bc0e7632d20342c2d66251407fa017ff23
IEDL.DBID DRFUL
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374258100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
1616-3028
IngestDate Tue Nov 04 16:52:52 EST 2025
Thu Oct 02 10:30:22 EDT 2025
Sat Nov 29 07:22:35 EST 2025
Tue Nov 18 21:16:38 EST 2025
Wed Jan 22 16:45:49 EST 2025
Tue Nov 11 03:32:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5044-4e2171a2da46b03f04d5db7f40b2607bc0e7632d20342c2d66251407fa017ff23
Notes Swedish Foundation for Strategic Research
ark:/67375/WNG-45K75KZQ-R
Önnesjö Foundation
Knut and Alice Wallenberg Foundation
istex:7AF9A212B604C4927A9E0E8A7057DB8BCA10281B
ArticleID:ADFM201502274
Universidad Técnica de Ambato
Advanced Functional Materials Center at Linköping University
Secretaría de Educación Superior, Ciencia, Tecnología e Innovación
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127774
PQID 1808054678
PQPubID 23500
PageCount 8
ParticipantIDs swepub_primary_oai_DiVA_org_liu_127774
proquest_miscellaneous_1808054678
crossref_citationtrail_10_1002_adfm_201502274
crossref_primary_10_1002_adfm_201502274
wiley_primary_10_1002_adfm_201502274_ADFM201502274
istex_primary_ark_67375_WNG_45K75KZQ_R
PublicationCentury 2000
PublicationDate April 12, 2016
PublicationDateYYYYMMDD 2016-04-12
PublicationDate_xml – month: 04
  year: 2016
  text: April 12, 2016
  day: 12
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References X. Zhang, H. Bronstein, A. J. Kronemeijer, J. Smith, Y. Kim, R. J. Kline, L. J. Richter, T. D. Anthopoulos, H. Sirringhaus, K. Song, M. Heeney, W. Zhang, I. McCulloch, D. M. DeLongchamp, Nat. Commun. 2013, 4, 2238.
G. Gelinck, P. Heremans, K. Nomoto, T. D. Anthopoulos, Adv. Mater. 2010, 22, 3778.
D. V. Lang, X. Chi, T. Siegrist, A. M. Sergent, A. P. Ramirez, Phys. Rev. Lett. 2004, 93, 86802.
M. Ramesh, H.-C. Lin, C.-W. Chu, J. Mater. Chem. 2012, 22, 16506.
M. L. Hammock, O. Knopfmacher, B. D. Naab, J. B.-H. Tok, Z. Bao, ACS Nano 2013, 7, 3970.
B. Noda, H. Wada, K. Shibata, T. Yoshino, M. Katsuhara, I. Aoyagi, T. Mori, T. Taguchi, T. Kambayashi, K. Ishikawa, H. Takezoe, Nanotechnology 2007, 18, 424009.
H. Xie, H. Alves, A. F. Morpurgo, Phys. Rev. B 2009, 80, 245305.
S. G. J. Mathijssen, M.-J. Spijkman, A.-M. Andringa, P. A. van Hal, I. McCulloch, M. Kemerink, R. A. J. Janssen, D. M. de Leeuw, Adv. Mater. 2010, 22, 5105.
G. Giri, R. Li, D.-M. Smilgies, E. Q. Li, Y. Diao, K. M. Lenn, M. Chiu, D. W. Lin, R. Allen, J. Reinspach, S. C. B. Mannsfeld, S. T. Thoroddsen, P. Clancy, Z. Bao, A. Amassian, Nat. Commun. 2014, 5, 3573.
J. Smith, R. Hamilton, M. Heeney, D. M. de Leeuw, E. Cantatore, J. E. Anthony, I. McCulloch, D. D. C. Bradley, T. D. Anthopoulos, Appl. Phys. Lett. 2008, 93, 253301.
C. Van Berkel, M. J. Powell, Appl. Phys. Lett. 1987, 51, 1094.
W. L. Kalb, B. Batlogg, Phys. Rev. B 2010, 81, 035327.
M. Leufgen, O. Rost, C. Gould, G. Schmidt, J. Geurts, L. W. Molenkamp, N. S. Oxtoby, M. Mas-Torrent, N. Crivillers, J. Veciana, C. Rovira, Org. Electron. 2008, 9, 1101.
A. S. Dimitrov, K. Nagayama, Langmuir 1996, 12, 1303.
R. J. Ashley, in Polymer Permeability (Ed. J. Comyn), Springer, Dordrecht, Netherlands 1985, pp. 269-308.
K. Kuribara, H. Wang, N. Uchiyama, K. Fukuda, T. Yokota, U. Zschieschang, C. Jaye, D. Fischer, H. Klauk, T. Yamamoto, K. Takimiya, M. Ikeda, H. Kuwabara, T. Sekitani, Y.-L. Loo, T. Someya, Nat. Commun. 2012, 3, 723.
Y. Xu, C. Liu, D. Khim, Y.-Y. Noh, Phys. Chem. Chem. Phys. 2015, DOI 10.1039/c4cp02413c.
N. Lustig, W. E. Howard, Solid State Commun. 1989, 72, 59.
H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa, Nature 2011, 475, 364.
H. Pan, Y. Li, Y. Wu, P. Liu, B. S. Ong, S. Zhu, G. Xu, J. Am. Chem. Soc. 2007, 129, 4112.
G. Horowitz, M. E. Hajlaoui, R. Hajlaoui, J. Appl. Phys. 2000, 87, 4456.
A. A. Virkar, S. Mannsfeld, Z. Bao, N. Stingelin, Adv. Mater. 2010, 22, 3857.
K. Chen, S. V Stoianov, J. Bangerter, H. D. Robinson, J. Colloid Interface Sci. 2010, 344, 315.
D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, H. Sirringhaus, Nature 2014, 515, 384.
N. A. Minder, S. Ono, Z. Chen, A. Facchetti, A. F. Morpurgo, Adv. Mater. 2012, 24, 503.
N. Lustig, J. Kanicki, J. Appl. Phys. 1989, 65, 3951.
M. Mas-Torrent, P. Hadley, S. T. Bromley, N. Crivillers, J. Veciana, C. Rovira, Appl. Phys. Lett. 2005, 86, 12110.
J. Nagakubo, M. Ashizawa, T. Kawamoto, A. Tanioka, T. Mori, Phys. Chem. Chem. Phys. 2011, 13, 14370.
A. Stesmans, Y. Wu, Solid State Commun. 1987, 62, 435.
G. Horowitz, R. Hajlaoui, P. Delannoy, J. Phys. III 1995, 5, 355.
A. Pierre, M. Sadeghi, M. M. Payne, A. Facchetti, J. E. Anthony, A. C. Arias, Adv. Mater. 2014, 26, 5722.
H. Zhong, J. Smith, S. Rossbauer, A. J. P. White, T. D. Anthopoulos, M. Heeney, Adv. Mater. 2012, 24, 3205.
T. Sakanoue, H. Sirringhaus, Nat. Mater. 2010, 9, 736.
W. B. Jackson, J. M. Marshall, M. D. Moyer, Phys. Rev. B 1989, 39, 1164.
Y. Diao, B. C.-K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld, Z. Bao, Nat. Mater. 2013, 12, 665.
J. Zaumseil, H. Sirringhaus, Chem. Rev. 2007, 107, 1296.
B. R. Hamilton, J. Smith, S. Ogier, M. Heeney, J. E. Anthony, I. Mcculloch, J. Veres, D. D. C. Bradley, T. D. Anthopoulos, Adv. Mater. 2009, 21, 1166.
A. Brillante, I. Bilotti, R. G. Della Valle, E. Venuti, S. Milita, C. Dionigi, F. Borgatti, A. N. Lazar, F. Biscarini, M. Mas-Torrent, N. S. Oxtoby, N. Crivillers, J. Veciana, C. Rovira, M. Leufgen, G. Schmidt, L. W. Molenkamp, CrystEngComm 2008, 10, 1899.
W. Xie, K. Willa, Y. Wu, R. Häusermann, K. Takimiya, B. Batlogg, C. D. Frisbie, Adv. Mater. 2013, 25, 3478.
M. E. Roberts, S. C. B. Mannsfeld, N. Queralto, C. Reese, J. Locklin, W. Knoll, Z. Bao, Proc. Natl. Acad. Sci. USA 2008, 105, 12134.
K. S. Karim, A. Nathan, M. Hack, W. I. Milne, IEEE Electron Device Lett. 2004, 25, 188.
A. Brillante, I. Bilotti, R. G. Della Valle, E. Venuti, M. Mas-Torrent, C. Rovira, Y. Yamashita, Chem. Phys. Lett. 2012, 523, 74.
C. Reese, Z. Bao, Mater. Today 2007, 10, 20.
C. Piliego, D. Jarzab, G. Gigli, Z. Chen, A. Facchetti, M. A. Loi, Adv. Mater. 2009, 21, 1573.
Y. Diao, L. Shaw, Z. Bao, S. C. B. Mannsfeld, Energy Environ. Sci. 2014, 7, 2145.
T. Yamada, T. Hasegawa, M. Hiraoka, H. Matsui, Y. Tokura, G. Saito, Appl. Phys. Lett. 2008, 92, 233306.
Naraso, J. Nishida, S. Ando, J. Yamaguchi, K. Itaka, H. Koinuma, H. Tada, S. Tokito, Y. Yamashita, J. Am. Chem. Soc. 2005, 127, 10142.
V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, J. A. Rogers, Science 2004, 303, 1644.
G. Lu, J. Blakesley, S. Himmelberger, P. Pingel, J. Frisch, I. Lieberwirth, I. Salzmann, M. Oehzelt, R. Di Pietro, A. Salleo, N. Koch, D. Neher, Nat. Commun. 2013, 4, 1588.
J. Rivnay, L. H. Jimison, J. E. Northrup, M. F. Toney, R. Noriega, S. Lu, T. J. Marks, A. Facchetti, A. Salleo, Nat. Mater. 2009, 8, 952.
K. Fukuda, Y. Takeda, M. Mizukami, D. Kumaki, S. Tokito, Sci. Rep. 2014, 4, 3947.
S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, T. N. Jackson, Appl. Phys. Lett. 1998, 72, 1854.
M. Mas-Torrent, C. Rovira, Chem. Rev. 2011, 111, 4833.
V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, M. E. Gershenson, Phys. Rev. Lett. 2004, 93, 86602.
C. Liu, T. Minari, X. Lu, A. Kumatani, K. Takimiya, K. Tsukagoshi, Adv. Mater. 2011, 23, 523.
S. Fabiano, B. Pignataro, Chem. Soc. Rev. 2012, 41, 6859.
P. Born, S. Blum, A. Munoz, T. Kraus, Langmuir 2011, 27, 8621.
P. a Bobbert, A. Sharma, S. G. J. Mathijssen, M. Kemerink, D. M. de Leeuw, Adv. Mater. 2012, 24, 1146.
2007; 107
2013; 4
2013; 25
2009; 80
2000; 87
2004; 25
2010; 344
2008; 9
2014; 26
2011; 13
2008; 105
2013; 7
2012; 523
2011; 475
2011; 111
2010; 22
1989; 72
2014; 5
2014; 4
2013; 12
1985
2011; 23
2012; 24
2011; 27
2014; 7
2012; 22
2010; 9
1989; 39
2007; 18
2014; 515
2007; 129
2004; 303
2009; 21
1987; 51
1989; 65
2005; 86
2008; 10
2010; 81
2007; 10
2008; 92
2008; 93
1995; 5
1996; 12
2012; 3
1987; 62
2004; 93
2005; 127
2009; 8
2015
1998; 72
2012; 41
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: W. B. Jackson, J. M. Marshall, M. D. Moyer, Phys. Rev. B 1989, 39, 1164.
– reference: G. Horowitz, R. Hajlaoui, P. Delannoy, J. Phys. III 1995, 5, 355.
– reference: W. Xie, K. Willa, Y. Wu, R. Häusermann, K. Takimiya, B. Batlogg, C. D. Frisbie, Adv. Mater. 2013, 25, 3478.
– reference: K. S. Karim, A. Nathan, M. Hack, W. I. Milne, IEEE Electron Device Lett. 2004, 25, 188.
– reference: C. Reese, Z. Bao, Mater. Today 2007, 10, 20.
– reference: K. Chen, S. V Stoianov, J. Bangerter, H. D. Robinson, J. Colloid Interface Sci. 2010, 344, 315.
– reference: G. Lu, J. Blakesley, S. Himmelberger, P. Pingel, J. Frisch, I. Lieberwirth, I. Salzmann, M. Oehzelt, R. Di Pietro, A. Salleo, N. Koch, D. Neher, Nat. Commun. 2013, 4, 1588.
– reference: A. Stesmans, Y. Wu, Solid State Commun. 1987, 62, 435.
– reference: M. L. Hammock, O. Knopfmacher, B. D. Naab, J. B.-H. Tok, Z. Bao, ACS Nano 2013, 7, 3970.
– reference: T. Sakanoue, H. Sirringhaus, Nat. Mater. 2010, 9, 736.
– reference: K. Fukuda, Y. Takeda, M. Mizukami, D. Kumaki, S. Tokito, Sci. Rep. 2014, 4, 3947.
– reference: G. Gelinck, P. Heremans, K. Nomoto, T. D. Anthopoulos, Adv. Mater. 2010, 22, 3778.
– reference: J. Smith, R. Hamilton, M. Heeney, D. M. de Leeuw, E. Cantatore, J. E. Anthony, I. McCulloch, D. D. C. Bradley, T. D. Anthopoulos, Appl. Phys. Lett. 2008, 93, 253301.
– reference: Y. Xu, C. Liu, D. Khim, Y.-Y. Noh, Phys. Chem. Chem. Phys. 2015, DOI 10.1039/c4cp02413c.
– reference: N. Lustig, J. Kanicki, J. Appl. Phys. 1989, 65, 3951.
– reference: B. R. Hamilton, J. Smith, S. Ogier, M. Heeney, J. E. Anthony, I. Mcculloch, J. Veres, D. D. C. Bradley, T. D. Anthopoulos, Adv. Mater. 2009, 21, 1166.
– reference: S. Fabiano, B. Pignataro, Chem. Soc. Rev. 2012, 41, 6859.
– reference: C. Van Berkel, M. J. Powell, Appl. Phys. Lett. 1987, 51, 1094.
– reference: C. Piliego, D. Jarzab, G. Gigli, Z. Chen, A. Facchetti, M. A. Loi, Adv. Mater. 2009, 21, 1573.
– reference: D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, H. Sirringhaus, Nature 2014, 515, 384.
– reference: P. a Bobbert, A. Sharma, S. G. J. Mathijssen, M. Kemerink, D. M. de Leeuw, Adv. Mater. 2012, 24, 1146.
– reference: G. Giri, R. Li, D.-M. Smilgies, E. Q. Li, Y. Diao, K. M. Lenn, M. Chiu, D. W. Lin, R. Allen, J. Reinspach, S. C. B. Mannsfeld, S. T. Thoroddsen, P. Clancy, Z. Bao, A. Amassian, Nat. Commun. 2014, 5, 3573.
– reference: W. L. Kalb, B. Batlogg, Phys. Rev. B 2010, 81, 035327.
– reference: A. S. Dimitrov, K. Nagayama, Langmuir 1996, 12, 1303.
– reference: M. Leufgen, O. Rost, C. Gould, G. Schmidt, J. Geurts, L. W. Molenkamp, N. S. Oxtoby, M. Mas-Torrent, N. Crivillers, J. Veciana, C. Rovira, Org. Electron. 2008, 9, 1101.
– reference: A. Brillante, I. Bilotti, R. G. Della Valle, E. Venuti, M. Mas-Torrent, C. Rovira, Y. Yamashita, Chem. Phys. Lett. 2012, 523, 74.
– reference: M. Mas-Torrent, P. Hadley, S. T. Bromley, N. Crivillers, J. Veciana, C. Rovira, Appl. Phys. Lett. 2005, 86, 12110.
– reference: A. Brillante, I. Bilotti, R. G. Della Valle, E. Venuti, S. Milita, C. Dionigi, F. Borgatti, A. N. Lazar, F. Biscarini, M. Mas-Torrent, N. S. Oxtoby, N. Crivillers, J. Veciana, C. Rovira, M. Leufgen, G. Schmidt, L. W. Molenkamp, CrystEngComm 2008, 10, 1899.
– reference: Naraso, J. Nishida, S. Ando, J. Yamaguchi, K. Itaka, H. Koinuma, H. Tada, S. Tokito, Y. Yamashita, J. Am. Chem. Soc. 2005, 127, 10142.
– reference: N. A. Minder, S. Ono, Z. Chen, A. Facchetti, A. F. Morpurgo, Adv. Mater. 2012, 24, 503.
– reference: A. Pierre, M. Sadeghi, M. M. Payne, A. Facchetti, J. E. Anthony, A. C. Arias, Adv. Mater. 2014, 26, 5722.
– reference: P. Born, S. Blum, A. Munoz, T. Kraus, Langmuir 2011, 27, 8621.
– reference: G. Horowitz, M. E. Hajlaoui, R. Hajlaoui, J. Appl. Phys. 2000, 87, 4456.
– reference: Y. Diao, B. C.-K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld, Z. Bao, Nat. Mater. 2013, 12, 665.
– reference: V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, J. A. Rogers, Science 2004, 303, 1644.
– reference: C. Liu, T. Minari, X. Lu, A. Kumatani, K. Takimiya, K. Tsukagoshi, Adv. Mater. 2011, 23, 523.
– reference: S. G. J. Mathijssen, M.-J. Spijkman, A.-M. Andringa, P. A. van Hal, I. McCulloch, M. Kemerink, R. A. J. Janssen, D. M. de Leeuw, Adv. Mater. 2010, 22, 5105.
– reference: B. Noda, H. Wada, K. Shibata, T. Yoshino, M. Katsuhara, I. Aoyagi, T. Mori, T. Taguchi, T. Kambayashi, K. Ishikawa, H. Takezoe, Nanotechnology 2007, 18, 424009.
– reference: D. V. Lang, X. Chi, T. Siegrist, A. M. Sergent, A. P. Ramirez, Phys. Rev. Lett. 2004, 93, 86802.
– reference: Y. Diao, L. Shaw, Z. Bao, S. C. B. Mannsfeld, Energy Environ. Sci. 2014, 7, 2145.
– reference: H. Pan, Y. Li, Y. Wu, P. Liu, B. S. Ong, S. Zhu, G. Xu, J. Am. Chem. Soc. 2007, 129, 4112.
– reference: T. Yamada, T. Hasegawa, M. Hiraoka, H. Matsui, Y. Tokura, G. Saito, Appl. Phys. Lett. 2008, 92, 233306.
– reference: J. Zaumseil, H. Sirringhaus, Chem. Rev. 2007, 107, 1296.
– reference: H. Zhong, J. Smith, S. Rossbauer, A. J. P. White, T. D. Anthopoulos, M. Heeney, Adv. Mater. 2012, 24, 3205.
– reference: V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, M. E. Gershenson, Phys. Rev. Lett. 2004, 93, 86602.
– reference: J. Rivnay, L. H. Jimison, J. E. Northrup, M. F. Toney, R. Noriega, S. Lu, T. J. Marks, A. Facchetti, A. Salleo, Nat. Mater. 2009, 8, 952.
– reference: N. Lustig, W. E. Howard, Solid State Commun. 1989, 72, 59.
– reference: X. Zhang, H. Bronstein, A. J. Kronemeijer, J. Smith, Y. Kim, R. J. Kline, L. J. Richter, T. D. Anthopoulos, H. Sirringhaus, K. Song, M. Heeney, W. Zhang, I. McCulloch, D. M. DeLongchamp, Nat. Commun. 2013, 4, 2238.
– reference: A. A. Virkar, S. Mannsfeld, Z. Bao, N. Stingelin, Adv. Mater. 2010, 22, 3857.
– reference: S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, T. N. Jackson, Appl. Phys. Lett. 1998, 72, 1854.
– reference: M. Ramesh, H.-C. Lin, C.-W. Chu, J. Mater. Chem. 2012, 22, 16506.
– reference: M. Mas-Torrent, C. Rovira, Chem. Rev. 2011, 111, 4833.
– reference: H. Xie, H. Alves, A. F. Morpurgo, Phys. Rev. B 2009, 80, 245305.
– reference: M. E. Roberts, S. C. B. Mannsfeld, N. Queralto, C. Reese, J. Locklin, W. Knoll, Z. Bao, Proc. Natl. Acad. Sci. USA 2008, 105, 12134.
– reference: K. Kuribara, H. Wang, N. Uchiyama, K. Fukuda, T. Yokota, U. Zschieschang, C. Jaye, D. Fischer, H. Klauk, T. Yamamoto, K. Takimiya, M. Ikeda, H. Kuwabara, T. Sekitani, Y.-L. Loo, T. Someya, Nat. Commun. 2012, 3, 723.
– reference: R. J. Ashley, in Polymer Permeability (Ed. J. Comyn), Springer, Dordrecht, Netherlands 1985, pp. 269-308.
– reference: J. Nagakubo, M. Ashizawa, T. Kawamoto, A. Tanioka, T. Mori, Phys. Chem. Chem. Phys. 2011, 13, 14370.
– reference: H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa, Nature 2011, 475, 364.
– volume: 515
  start-page: 384
  year: 2014
  publication-title: Nature
– volume: 65
  start-page: 3951
  year: 1989
  publication-title: J. Appl. Phys.
– volume: 81
  start-page: 035327
  year: 2010
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 20
  year: 2007
  publication-title: Mater. Today
– start-page: 269
  year: 1985
  end-page: 308
– volume: 523
  start-page: 74
  year: 2012
  publication-title: Chem. Phys. Lett.
– volume: 111
  start-page: 4833
  year: 2011
  publication-title: Chem. Rev.
– volume: 8
  start-page: 952
  year: 2009
  publication-title: Nat. Mater.
– volume: 87
  start-page: 4456
  year: 2000
  publication-title: J. Appl. Phys.
– volume: 4
  start-page: 1588
  year: 2013
  publication-title: Nat. Commun.
– volume: 22
  start-page: 16506
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 72
  start-page: 1854
  year: 1998
  publication-title: Appl. Phys. Lett.
– volume: 93
  start-page: 253301
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 72
  start-page: 59
  year: 1989
  publication-title: Solid State Commun.
– volume: 92
  start-page: 233306
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 25
  start-page: 188
  year: 2004
  publication-title: IEEE Electron Device Lett.
– volume: 39
  start-page: 1164
  year: 1989
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 1899
  year: 2008
  publication-title: CrystEngComm
– volume: 127
  start-page: 10142
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 1166
  year: 2009
  publication-title: Adv. Mater.
– volume: 22
  start-page: 3778
  year: 2010
  publication-title: Adv. Mater.
– volume: 344
  start-page: 315
  year: 2010
  publication-title: J. Colloid Interface Sci.
– volume: 93
  start-page: 86602
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 86
  start-page: 12110
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 129
  start-page: 4112
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 14370
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 25
  start-page: 3478
  year: 2013
  publication-title: Adv. Mater.
– volume: 24
  start-page: 1146
  year: 2012
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2238
  year: 2013
  publication-title: Nat. Commun.
– volume: 3
  start-page: 723
  year: 2012
  publication-title: Nat. Commun.
– volume: 41
  start-page: 6859
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 26
  start-page: 5722
  year: 2014
  publication-title: Adv. Mater.
– volume: 7
  start-page: 2145
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 24
  start-page: 3205
  year: 2012
  publication-title: Adv. Mater.
– volume: 475
  start-page: 364
  year: 2011
  publication-title: Nature
– volume: 5
  start-page: 3573
  year: 2014
  publication-title: Nat. Commun.
– volume: 24
  start-page: 503
  year: 2012
  publication-title: Adv. Mater.
– volume: 303
  start-page: 1644
  year: 2004
  publication-title: Science
– volume: 4
  start-page: 3947
  year: 2014
  publication-title: Sci. Rep.
– volume: 22
  start-page: 3857
  year: 2010
  publication-title: Adv. Mater.
– volume: 27
  start-page: 8621
  year: 2011
  publication-title: Langmuir
– volume: 9
  start-page: 736
  year: 2010
  publication-title: Nat. Mater.
– volume: 22
  start-page: 5105
  year: 2010
  publication-title: Adv. Mater.
– year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 3970
  year: 2013
  publication-title: ACS Nano
– volume: 18
  start-page: 424009
  year: 2007
  publication-title: Nanotechnology
– volume: 62
  start-page: 435
  year: 1987
  publication-title: Solid State Commun.
– volume: 93
  start-page: 86802
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 107
  start-page: 1296
  year: 2007
  publication-title: Chem. Rev.
– volume: 80
  start-page: 245305
  year: 2009
  publication-title: Phys. Rev. B
– volume: 21
  start-page: 1573
  year: 2009
  publication-title: Adv. Mater.
– volume: 105
  start-page: 12134
  year: 2008
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 1303
  year: 1996
  publication-title: Langmuir
– volume: 51
  start-page: 1094
  year: 1987
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 523
  year: 2011
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1101
  year: 2008
  publication-title: Org. Electron.
– volume: 12
  start-page: 665
  year: 2013
  publication-title: Nat. Mater.
– volume: 5
  start-page: 355
  year: 1995
  publication-title: J. Phys. III
– ident: e_1_2_6_47_1
  doi: 10.1002/adma.201002682
– ident: e_1_2_6_30_1
  doi: 10.1016/j.cplett.2011.12.026
– ident: e_1_2_6_28_1
  doi: 10.1002/adma.201200859
– ident: e_1_2_6_37_1
  doi: 10.1038/ncomms3238
– ident: e_1_2_6_49_1
  doi: 10.1038/nmat2825
– ident: e_1_2_6_3_1
  doi: 10.1039/C4EE00688G
– ident: e_1_2_6_16_1
  doi: 10.1039/c2cs35074b
– ident: e_1_2_6_48_1
  doi: 10.1063/1.121205
– ident: e_1_2_6_6_1
  doi: 10.1038/nmat3650
– ident: e_1_2_6_55_1
  doi: 10.1103/PhysRevB.39.1164
– ident: e_1_2_6_18_1
  doi: 10.1063/1.1848179
– ident: e_1_2_6_33_1
  doi: 10.1007/978-94-009-4858-7_7
– ident: e_1_2_6_41_1
  doi: 10.1103/PhysRevB.81.035327
– ident: e_1_2_6_5_1
  doi: 10.1002/adma.201401520
– ident: e_1_2_6_10_1
  doi: 10.1038/nmat2570
– ident: e_1_2_6_31_1
  doi: 10.1039/b810993a
– ident: e_1_2_6_17_1
  doi: 10.1002/adma.201001865
– ident: e_1_2_6_52_1
  doi: 10.1039/c2jm32561f
– ident: e_1_2_6_29_1
  doi: 10.1063/1.3050525
– ident: e_1_2_6_34_1
  doi: 10.1021/cr0501543
– ident: e_1_2_6_11_1
  doi: 10.1038/srep03947
– ident: e_1_2_6_42_1
  doi: 10.1063/1.373091
– ident: e_1_2_6_36_1
  doi: 10.1038/nature13854
– ident: e_1_2_6_2_1
  doi: 10.1038/nature10313
– ident: e_1_2_6_39_1
  doi: 10.1103/PhysRevLett.93.086802
– ident: e_1_2_6_43_1
  doi: 10.1051/jp3:1995132
– ident: e_1_2_6_12_1
  doi: 10.1038/ncomms1721
– ident: e_1_2_6_38_1
  doi: 10.1002/adma.200903559
– ident: e_1_2_6_4_1
  doi: 10.1039/c4cp02413c
– ident: e_1_2_6_8_1
  doi: 10.1021/ja067879o
– ident: e_1_2_6_35_1
  doi: 10.1126/science.1094196
– ident: e_1_2_6_54_1
  doi: 10.1063/1.98751
– ident: e_1_2_6_13_1
  doi: 10.1002/adma.201104580
– ident: e_1_2_6_25_1
  doi: 10.1021/la9502251
– ident: e_1_2_6_27_1
  doi: 10.1002/adma.200801725
– ident: e_1_2_6_50_1
  doi: 10.1073/pnas.0802105105
– ident: e_1_2_6_1_1
  doi: 10.1016/S1369-7021(07)70016-0
– ident: e_1_2_6_22_1
  doi: 10.1063/1.2940593
– ident: e_1_2_6_32_1
  doi: 10.1021/cr100142w
– ident: e_1_2_6_58_1
  doi: 10.1016/0038-1098(89)90879-X
– ident: e_1_2_6_45_1
  doi: 10.1103/PhysRevB.80.245305
– ident: e_1_2_6_57_1
  doi: 10.1016/0038-1098(87)91050-7
– ident: e_1_2_6_53_1
  doi: 10.1063/1.343361
– ident: e_1_2_6_14_1
  doi: 10.1002/adma.200803207
– ident: e_1_2_6_26_1
  doi: 10.1021/la2006138
– ident: e_1_2_6_9_1
  doi: 10.1038/ncomms2587
– ident: e_1_2_6_56_1
  doi: 10.1109/LED.2004.825154
– ident: e_1_2_6_46_1
  doi: 10.1002/adma.201103960
– ident: e_1_2_6_51_1
  doi: 10.1021/nn305903q
– ident: e_1_2_6_40_1
  doi: 10.1002/adma.201300886
– ident: e_1_2_6_7_1
  doi: 10.1038/ncomms4573
– ident: e_1_2_6_44_1
  doi: 10.1103/PhysRevLett.93.086602
– ident: e_1_2_6_19_1
  doi: 10.1016/j.orgel.2008.08.011
– ident: e_1_2_6_20_1
  doi: 10.1088/0957-4484/18/42/424009
– ident: e_1_2_6_21_1
  doi: 10.1021/ja051755e
– ident: e_1_2_6_15_1
  doi: 10.1002/adma.200903193
– ident: e_1_2_6_24_1
  doi: 10.1016/j.jcis.2010.01.010
– ident: e_1_2_6_23_1
  doi: 10.1039/c1cp21507h
SSID ssj0017734
Score 2.5054364
Snippet In electronics, the field‐effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications...
In electronics, the field-effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications...
SourceID swepub
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2379
SubjectTerms charge carrier mobility
Circuits
Coating
device stability
Devices
Electric fields
Electronics
Field effect transistors
Inverters
Organic field-effect transistors
Semiconductor devices
temperature-independent transport
Thin films
thin-film coating
Title Single Crystal-Like Performance in Solution-Coated Thin-Film Organic Field-Effect Transistors
URI https://api.istex.fr/ark:/67375/WNG-45K75KZQ-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201502274
https://www.proquest.com/docview/1808054678
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127774
Volume 26
WOSCitedRecordID wos000374258100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMctaHmAB-6IcpOREDxFS1w7Th-rloC0Uo3BRsWLZcc2ihZSlG4I3vYR9hn3SXZO3GbrA0KCp9wcx_Il5398-ZmQVyIDUZtmPBqakYhA_4-iLBMm8gi9S7TJTNt1cTiT83m2WIz2rqziD3yIrsMNW0b7v8YGrs1q5xIaqq3HleQgaBh4VtdJn0HlFT3Sn-7nB7NuJEHKMLKcJjjHK1lswI0x29mOYcsw9TGPf22rzkAS3RaxrRXK7_x_-u-S22sFSsehytwj11x9n9y6wiV8QNwnOFSOTprfIB6r89OzWXnk6N7lIgNa1nTTowaPJ0uQrJbiJqBwlZfVdxoWeRY0xylycDNgkmlrG1s0yeohOcjffp68j9b7MUSFiDmPuAP_JdHMap6aeOhjboU10vPYgFckTRE7-FsxyxArWDCbgm8F_pv0GorBezZ8RHr1snaPCU0KsJgjzY2XBQdJYryVCZOptwki3s2ARJvCUMUaVo57ZlQqYJaZwuxTXfYNyJsu_I-A6fhjyNdt2XbBdHOEk9ukUF_m7xQXu1Lsfv2o9gfk5abwFTQ5HEfRtVuerFSCLE4BFiaDyEKt6GJDWve0PByrZfNNVSWSuqXEr7K2LvwlcWo8zT90V0_-5aWn5Cacp1GLo3xGesfNiXtObhQ_j8tV82LdOi4AKoERaA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1bb9MwFMctWJFgD9zRyrgYCcFTtMR14vSxaglDzaoxtlHtxYpjG0XL0indELztI_AZ-SScE6cZfUBIiKfKqeuk9nHO__jyMyGvwxhEbRRzb6CGoQf6f-jFcag8i9C7IFOxaoYujlMxm8Xz-XC_XU2Ie2EcH6IbcMOe0byvsYPjgPTONTU00xa3koOiYRBa3SQ9DrYERt6bHCRHaTeVIISbWo4CXOQVzFfkRp_trJew5pl6WMnf1mWnQ4muq9jGDSX3_sMfuE_uthqUjpzRPCA3TPWQbP5GJnxEzCf4KA0d199BPpY_r36kxamh-9fbDGhR0dWYGnw9XoBo1RSPAYVUUpRn1G3zzGmCi-TgogMl08Y7NnCS5WNylLw7HO967YkMXh76nHvcQAQTZExnPFL-wPpch1oJy30FcZFQuW_gfcU0Q7BgznQE0RVEcMJm0A7WssETslEtKrNFaJCDzxxmXFmRcxAlymoRMBFZHSDkXfWJt2oNmbe4cjw1o5QOtMwkVp_sqq9P3nb5zx2o44853zSN22XL6lNc3iZC-Xn2XvJwKsLpyUd50CevVq0vodPhTEpWmcXlUgZI4wzBx8RQmDOLrjTkdU-K45Fc1F9kWSCrWwi8K2uM4S8PJ0eTZK9LPf2XH70kt3cP91KZfphNt8kduB55DZzyGdm4qC_Nc3Ir_3pRLOsXbVf5BYKNFVg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3LjtMwFIYtaBGCBXdEuRoJwcqaxHXidFm1BFBLVQZmqGZjxbGNognpKJ1BsOMReEaehHPiNEMXCAmxipw4TuJLzn98-UzIsygBURsngg31KGKg_0csSSLNHELvwkwnuum6OJzLxSJZrUbLdjYhroXxfIiuww1bRvO_xgZuT4zbO6eGZsbhUnJQNBxcq4ukL3AnmR7pT_fTg3k3lCClH1qOQ5zkFa625MaA7-2msGOZ-pjJX3dlp0eJ7qrYxgyl1__DB9wg11oNSse-0twkF2x1i1z9jUx4m9j3cCgtndTfQD6WP7__mBfHli7PlxnQoqLbPjW4PFmDaDUUtwGFUFqUn6lf5pnTFCfJwUkPSqaNdWzgJJs75CB9-WHymrU7MrA8CoRgwoIHE2bcZCLWwdAFwkRGSycCDX6R1Hlg4X_FDUewYM5NDN4VeHDSZVAOzvHhXdKr1pW9R2iYg80cZUI7mQsQJdoZGXIZOxMi5F0PCNuWhspbXDnumlEqD1rmCrNPddk3IC-6-Cce1PHHmM-bwu2iZfUxTm-Tkfq4eKVENJPR7Oid2h-Qp9vSV9DocCQlq-z6bKNCpHFGYGMSSMxXiy415HVPi8OxWtefVFkgq1tKfCpvKsNfXk6Np-nbLnT_X256Qi4vp6mav1nMHpArcDpmDZvyIemd1mf2EbmUfzktNvXjtqX8Au5zFNM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Crystal%E2%80%90Like+Performance+in+Solution%E2%80%90Coated+Thin%E2%80%90Film+Organic+Field%E2%80%90Effect+Transistors&rft.jtitle=Advanced+functional+materials&rft.au=del+Pozo%2C+Freddy+G.&rft.au=Fabiano%2C+Simone&rft.au=Pfattner%2C+Raphael&rft.au=Georgakopoulos%2C+Stamatis&rft.date=2016-04-12&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=26&rft.issue=14&rft.spage=2379&rft.epage=2386&rft_id=info:doi/10.1002%2Fadfm.201502274&rft.externalDBID=10.1002%252Fadfm.201502274&rft.externalDocID=ADFM201502274
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon