Single Crystal-Like Performance in Solution-Coated Thin-Film Organic Field-Effect Transistors
In electronics, the field‐effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications requires stable and ideal electrical characteristics over a wide range of temperatures and environments. Solution processing, using printing or...
Gespeichert in:
| Veröffentlicht in: | Advanced functional materials Jg. 26; H. 14; S. 2379 - 2386 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Blackwell Publishing Ltd
12.04.2016
|
| Schlagworte: | |
| ISSN: | 1616-301X, 1616-3028, 1616-3028 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In electronics, the field‐effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications requires stable and ideal electrical characteristics over a wide range of temperatures and environments. Solution processing, using printing or coating techniques, has been explored to manufacture organic field‐effect transistors (OFET) on flexible carriers, enabling radically novel electronics applications. Ideal electrical characteristics, in organic materials, are typically only found in single crystals. Tiresome growth and manipulation of these hamper practical production of flexible OFETs circuits. To date, neither devices nor any circuits, based on solution‐processed OFETs, has exhibited an ideal set of characteristics similar or better than today's FET technology based on amorphous silicon. Here, bar‐assisted meniscus shearing of dibenzo‐tetrathiafulvalene to coat‐process self‐organized crystalline organic semiconducting domains with high reproducibility is reported. Including these coatings as the channel in OFETs, electric field and temperature‐independent charge carrier mobility and no bias stress effects are observed. Furthermore, record‐high gain in OFET inverters and exceptional operational stability in both air and water are measured.
Bar‐assisted meniscus shearing of dibenzo‐tetrathiafulvalene is used to coat‐process self‐organized crystalline organic semiconducting domains with high reproducibility for organic field‐effect transistors (OFETs). Electric field and temperature‐independent charge carrier mobility as well as no bias stress effects are observed in these devices. A record‐high gain in OFET inverters and exceptional operational stability in both air and water is demonstrated. |
|---|---|
| AbstractList | In electronics, the field-effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications requires stable and ideal electrical characteristics over a wide range of temperatures and environments. Solution processing, using printing or coating techniques, has been explored to manufacture organic field-effect transistors (OFET) on flexible carriers, enabling radically novel electronics applications. Ideal electrical characteristics, in organic materials, are typically only found in single crystals. Tiresome growth and manipulation of these hamper practical production of flexible OFETs circuits. To date, neither devices nor any circuits, based on solution-processed OFETs, has exhibited an ideal set of characteristics similar or better than todays FET technology based on amorphous silicon. Here, bar-assisted meniscus shearing of dibenzo-tetrathiafulvalene to coat-process self-organized crystalline organic semiconducting domains with high reproducibility is reported. Including these coatings as the channel in OFETs, electric field and temperature-independent charge carrier mobility and no bias stress effects are observed. Furthermore, record-high gain in OFET inverters and exceptional operational stability in both air and water are measured. In electronics, the field‐effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications requires stable and ideal electrical characteristics over a wide range of temperatures and environments. Solution processing, using printing or coating techniques, has been explored to manufacture organic field‐effect transistors (OFET) on flexible carriers, enabling radically novel electronics applications. Ideal electrical characteristics, in organic materials, are typically only found in single crystals. Tiresome growth and manipulation of these hamper practical production of flexible OFETs circuits. To date, neither devices nor any circuits, based on solution‐processed OFETs, has exhibited an ideal set of characteristics similar or better than today's FET technology based on amorphous silicon. Here, bar‐assisted meniscus shearing of dibenzo‐tetrathiafulvalene to coat‐process self‐organized crystalline organic semiconducting domains with high reproducibility is reported. Including these coatings as the channel in OFETs, electric field and temperature‐independent charge carrier mobility and no bias stress effects are observed. Furthermore, record‐high gain in OFET inverters and exceptional operational stability in both air and water are measured. Bar‐assisted meniscus shearing of dibenzo‐tetrathiafulvalene is used to coat‐process self‐organized crystalline organic semiconducting domains with high reproducibility for organic field‐effect transistors (OFETs). Electric field and temperature‐independent charge carrier mobility as well as no bias stress effects are observed in these devices. A record‐high gain in OFET inverters and exceptional operational stability in both air and water is demonstrated. In electronics, the field-effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications requires stable and ideal electrical characteristics over a wide range of temperatures and environments. Solution processing, using printing or coating techniques, has been explored to manufacture organic field-effect transistors (OFET) on flexible carriers, enabling radically novel electronics applications. Ideal electrical characteristics, in organic materials, are typically only found in single crystals. Tiresome growth and manipulation of these hamper practical production of flexible OFETs circuits. To date, neither devices nor any circuits, based on solution-processed OFETs, has exhibited an ideal set of characteristics similar or better than today's FET technology based on amorphous silicon. Here, bar-assisted meniscus shearing of dibenzo-tetrathiafulvalene to coat-process self-organized crystalline organic semiconducting domains with high reproducibility is reported. Including these coatings as the channel in OFETs, electric field and temperature-independent charge carrier mobility and no bias stress effects are observed. Furthermore, record-high gain in OFET inverters and exceptional operational stability in both air and water are measured. Bar-assisted meniscus shearing of dibenzo-tetrathiafulvalene is used to coat-process self-organized crystalline organic semiconducting domains with high reproducibility for organic field-effect transistors (OFETs). Electric field and temperature-independent charge carrier mobility as well as no bias stress effects are observed in these devices. A record-high gain in OFET inverters and exceptional operational stability in both air and water is demonstrated. In electronics, the field‐effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications requires stable and ideal electrical characteristics over a wide range of temperatures and environments. Solution processing, using printing or coating techniques, has been explored to manufacture organic field‐effect transistors (OFET) on flexible carriers, enabling radically novel electronics applications. Ideal electrical characteristics, in organic materials, are typically only found in single crystals. Tiresome growth and manipulation of these hamper practical production of flexible OFETs circuits. To date, neither devices nor any circuits, based on solution‐processed OFETs, has exhibited an ideal set of characteristics similar or better than today's FET technology based on amorphous silicon. Here, bar‐assisted meniscus shearing of dibenzo‐tetrathiafulvalene to coat‐process self‐organized crystalline organic semiconducting domains with high reproducibility is reported. Including these coatings as the channel in OFETs, electric field and temperature‐independent charge carrier mobility and no bias stress effects are observed. Furthermore, record‐high gain in OFET inverters and exceptional operational stability in both air and water are measured. |
| Author | Georgakopoulos, Stamatis Liu, Xianjie Fahlman, Mats del Pozo, Freddy G. Fabiano, Simone Veciana, Jaume Galindo, Sergi Braun, Slawomir Mas-Torrent, Marta Berggren, Magnus Rovira, Concepció Crispin, Xavier Pfattner, Raphael |
| Author_xml | – sequence: 1 givenname: Freddy G. surname: del Pozo fullname: del Pozo, Freddy G. organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, 08193, Bellaterra, Spain – sequence: 2 givenname: Simone surname: Fabiano fullname: Fabiano, Simone organization: Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden – sequence: 3 givenname: Raphael surname: Pfattner fullname: Pfattner, Raphael organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, 08193, Bellaterra, Spain – sequence: 4 givenname: Stamatis surname: Georgakopoulos fullname: Georgakopoulos, Stamatis organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, 08193, Bellaterra, Spain – sequence: 5 givenname: Sergi surname: Galindo fullname: Galindo, Sergi organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, 08193, Bellaterra, Spain – sequence: 6 givenname: Xianjie surname: Liu fullname: Liu, Xianjie organization: Department of Physics, Chemistry, and Biology, Linköping University, SE-581 83, Linköping, Sweden – sequence: 7 givenname: Slawomir surname: Braun fullname: Braun, Slawomir organization: Department of Physics, Chemistry, and Biology, Linköping University, SE-581 83, Linköping, Sweden – sequence: 8 givenname: Mats surname: Fahlman fullname: Fahlman, Mats organization: Department of Physics, Chemistry, and Biology, Linköping University, SE-581 83, Linköping, Sweden – sequence: 9 givenname: Jaume surname: Veciana fullname: Veciana, Jaume organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, 08193, Bellaterra, Spain – sequence: 10 givenname: Concepció surname: Rovira fullname: Rovira, Concepció organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, 08193, Bellaterra, Spain – sequence: 11 givenname: Xavier surname: Crispin fullname: Crispin, Xavier organization: Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden – sequence: 12 givenname: Magnus surname: Berggren fullname: Berggren, Magnus email: mmas@icmab.es organization: Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden – sequence: 13 givenname: Marta surname: Mas-Torrent fullname: Mas-Torrent, Marta email: mmas@icmab.es organization: Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, 08193, Bellaterra, Spain |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127774$$DView record from Swedish Publication Index (Linköpings universitet) |
| BookMark | eNqFkE1vEzEQQFeoSLSFK-c9cnEYe712OEZpU1BTCjR8CAlZXu84mHrtYO-qzb9no5QIISFO48N71sw7KY5CDFgUzylMKAB7qVvbTRjQGhiT_FFxTAUVpAI2PTq86ZcnxUnOPwColBU_Lr7duLD2WM7TNvfak6W7xfIdJhtTp4PB0oXyJvqhdzGQedQ9tuXquwtk4XxXXqe1Ds6UC4e-JefWounLVdIhu9zHlJ8Wj632GZ89zNPi4-J8NX9NltcXb-azJTE1cE44MiqpZq3mooHKAm_rtpGWQ8MEyMYASlGxlkHFmWGtEKymHKTV4xnWsuq0IPt_8x1uhkZtkut02qqonTpzn2YqprXyblCUSSn5yL_Y85sUfw6Ye9W5bNB7HTAOWdEpTKHmQk5HlO9Rk2LOCa0yrte7HH3SzisKaldf7eqrQ_1Rm_yl_d7pn8KrvXDnPG7_Q6vZ2eLqT_fh_LE63h9cnW6VkJWs1ee3F4rXl7K-_Ppefah-Ad9HqIo |
| CitedBy_id | crossref_primary_10_1002_adfm_201703443 crossref_primary_10_1016_j_synthmet_2018_11_021 crossref_primary_10_1002_admt_202101535 crossref_primary_10_1002_aelm_201700326 crossref_primary_10_1039_D2NR05625A crossref_primary_10_1039_D2TC05066H crossref_primary_10_1002_admi_201900719 crossref_primary_10_1002_aelm_201600556 crossref_primary_10_1002_adfm_201905963 crossref_primary_10_1002_adfm_202410763 crossref_primary_10_1002_adfm_202006115 crossref_primary_10_1016_j_bios_2020_112433 crossref_primary_10_1007_s40042_025_01467_7 crossref_primary_10_1038_s41467_020_15974_7 crossref_primary_10_1002_adfm_201700526 crossref_primary_10_1002_adma_201602479 crossref_primary_10_1002_adfm_201904590 crossref_primary_10_1002_admi_202200815 crossref_primary_10_1103_PhysRevApplied_8_014001 crossref_primary_10_1039_D4TC05403B crossref_primary_10_1002_aelm_202400134 crossref_primary_10_1002_adfm_201807786 crossref_primary_10_1007_s11051_020_04975_8 crossref_primary_10_1021_acs_cgd_5c00046 crossref_primary_10_1002_adom_201901643 crossref_primary_10_1016_j_dyepig_2019_107847 crossref_primary_10_1002_aelm_202400887 crossref_primary_10_1063_1_4981774 crossref_primary_10_1016_j_synthmet_2019_01_001 crossref_primary_10_3389_fchem_2021_698246 crossref_primary_10_1002_adfm_202405171 crossref_primary_10_1002_aelm_202000431 crossref_primary_10_1038_s41578_019_0127_y crossref_primary_10_1002_admt_201900104 crossref_primary_10_1002_smll_202006043 crossref_primary_10_1016_j_apsusc_2018_04_097 crossref_primary_10_1002_adfm_202202071 crossref_primary_10_1002_aelm_201700349 crossref_primary_10_1002_adfm_201706372 crossref_primary_10_1002_admt_201600090 crossref_primary_10_1038_srep39623 crossref_primary_10_1002_aelm_201700157 crossref_primary_10_1002_aelm_201700271 crossref_primary_10_1002_aelm_202200293 crossref_primary_10_1002_adfm_201703899 crossref_primary_10_1039_C6CP08685C crossref_primary_10_1063_5_0059735 crossref_primary_10_1016_j_orgel_2017_06_020 crossref_primary_10_1007_s42114_024_01025_y crossref_primary_10_1016_j_mssp_2018_12_022 crossref_primary_10_1016_j_bios_2019_111844 crossref_primary_10_1002_adma_201704695 crossref_primary_10_1002_aelm_201800141 crossref_primary_10_1002_aelm_201800381 crossref_primary_10_1002_pssr_202100602 crossref_primary_10_1002_admi_202101679 crossref_primary_10_1109_LED_2019_2950345 crossref_primary_10_1002_smll_202300151 crossref_primary_10_1002_admi_201900950 crossref_primary_10_1016_j_polymer_2020_122208 crossref_primary_10_1007_s13233_021_9009_4 crossref_primary_10_1002_aelm_201800339 |
| Cites_doi | 10.1002/adma.201002682 10.1016/j.cplett.2011.12.026 10.1002/adma.201200859 10.1038/ncomms3238 10.1038/nmat2825 10.1039/C4EE00688G 10.1039/c2cs35074b 10.1063/1.121205 10.1038/nmat3650 10.1103/PhysRevB.39.1164 10.1063/1.1848179 10.1007/978-94-009-4858-7_7 10.1103/PhysRevB.81.035327 10.1002/adma.201401520 10.1038/nmat2570 10.1039/b810993a 10.1002/adma.201001865 10.1039/c2jm32561f 10.1063/1.3050525 10.1021/cr0501543 10.1038/srep03947 10.1063/1.373091 10.1038/nature13854 10.1038/nature10313 10.1103/PhysRevLett.93.086802 10.1051/jp3:1995132 10.1038/ncomms1721 10.1002/adma.200903559 10.1039/c4cp02413c 10.1021/ja067879o 10.1126/science.1094196 10.1063/1.98751 10.1002/adma.201104580 10.1021/la9502251 10.1002/adma.200801725 10.1073/pnas.0802105105 10.1016/S1369-7021(07)70016-0 10.1063/1.2940593 10.1021/cr100142w 10.1016/0038-1098(89)90879-X 10.1103/PhysRevB.80.245305 10.1016/0038-1098(87)91050-7 10.1063/1.343361 10.1002/adma.200803207 10.1021/la2006138 10.1038/ncomms2587 10.1109/LED.2004.825154 10.1002/adma.201103960 10.1021/nn305903q 10.1002/adma.201300886 10.1038/ncomms4573 10.1103/PhysRevLett.93.086602 10.1016/j.orgel.2008.08.011 10.1088/0957-4484/18/42/424009 10.1021/ja051755e 10.1002/adma.200903193 10.1016/j.jcis.2010.01.010 10.1039/c1cp21507h |
| ContentType | Journal Article |
| Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | BSCLL AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
| DOI | 10.1002/adfm.201502274 |
| DatabaseName | Istex CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | 2386 |
| ExternalDocumentID | oai_DiVA_org_liu_127774 10_1002_adfm_201502274 ADFM201502274 ark_67375_WNG_45K75KZQ_R |
| Genre | article |
| GrantInformation_xml | – fundername: Önnesjö Foundation – fundername: Swedish Foundation for Strategic Research – fundername: Secretaría de Educación Superior, Ciencia, Tecnología e Innovación – fundername: Advanced Functional Materials Center at Linköping University – fundername: Knut and Alice Wallenberg Foundation – fundername: Universidad Técnica de Ambato |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC AAYXX CITATION O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
| ID | FETCH-LOGICAL-c5044-4e2171a2da46b03f04d5db7f40b2607bc0e7632d20342c2d66251407fa017ff23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 94 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374258100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X 1616-3028 |
| IngestDate | Tue Nov 04 16:52:52 EST 2025 Thu Oct 02 10:30:22 EDT 2025 Sat Nov 29 07:22:35 EST 2025 Tue Nov 18 21:16:38 EST 2025 Wed Jan 22 16:45:49 EST 2025 Tue Nov 11 03:32:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5044-4e2171a2da46b03f04d5db7f40b2607bc0e7632d20342c2d66251407fa017ff23 |
| Notes | Swedish Foundation for Strategic Research ark:/67375/WNG-45K75KZQ-R Önnesjö Foundation Knut and Alice Wallenberg Foundation istex:7AF9A212B604C4927A9E0E8A7057DB8BCA10281B ArticleID:ADFM201502274 Universidad Técnica de Ambato Advanced Functional Materials Center at Linköping University Secretaría de Educación Superior, Ciencia, Tecnología e Innovación ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127774 |
| PQID | 1808054678 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_liu_127774 proquest_miscellaneous_1808054678 crossref_citationtrail_10_1002_adfm_201502274 crossref_primary_10_1002_adfm_201502274 wiley_primary_10_1002_adfm_201502274_ADFM201502274 istex_primary_ark_67375_WNG_45K75KZQ_R |
| PublicationCentury | 2000 |
| PublicationDate | April 12, 2016 |
| PublicationDateYYYYMMDD | 2016-04-12 |
| PublicationDate_xml | – month: 04 year: 2016 text: April 12, 2016 day: 12 |
| PublicationDecade | 2010 |
| PublicationTitle | Advanced functional materials |
| PublicationTitleAlternate | Adv. Funct. Mater |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | X. Zhang, H. Bronstein, A. J. Kronemeijer, J. Smith, Y. Kim, R. J. Kline, L. J. Richter, T. D. Anthopoulos, H. Sirringhaus, K. Song, M. Heeney, W. Zhang, I. McCulloch, D. M. DeLongchamp, Nat. Commun. 2013, 4, 2238. G. Gelinck, P. Heremans, K. Nomoto, T. D. Anthopoulos, Adv. Mater. 2010, 22, 3778. D. V. Lang, X. Chi, T. Siegrist, A. M. Sergent, A. P. Ramirez, Phys. Rev. Lett. 2004, 93, 86802. M. Ramesh, H.-C. Lin, C.-W. Chu, J. Mater. Chem. 2012, 22, 16506. M. L. Hammock, O. Knopfmacher, B. D. Naab, J. B.-H. Tok, Z. Bao, ACS Nano 2013, 7, 3970. B. Noda, H. Wada, K. Shibata, T. Yoshino, M. Katsuhara, I. Aoyagi, T. Mori, T. Taguchi, T. Kambayashi, K. Ishikawa, H. Takezoe, Nanotechnology 2007, 18, 424009. H. Xie, H. Alves, A. F. Morpurgo, Phys. Rev. B 2009, 80, 245305. S. G. J. Mathijssen, M.-J. Spijkman, A.-M. Andringa, P. A. van Hal, I. McCulloch, M. Kemerink, R. A. J. Janssen, D. M. de Leeuw, Adv. Mater. 2010, 22, 5105. G. Giri, R. Li, D.-M. Smilgies, E. Q. Li, Y. Diao, K. M. Lenn, M. Chiu, D. W. Lin, R. Allen, J. Reinspach, S. C. B. Mannsfeld, S. T. Thoroddsen, P. Clancy, Z. Bao, A. Amassian, Nat. Commun. 2014, 5, 3573. J. Smith, R. Hamilton, M. Heeney, D. M. de Leeuw, E. Cantatore, J. E. Anthony, I. McCulloch, D. D. C. Bradley, T. D. Anthopoulos, Appl. Phys. Lett. 2008, 93, 253301. C. Van Berkel, M. J. Powell, Appl. Phys. Lett. 1987, 51, 1094. W. L. Kalb, B. Batlogg, Phys. Rev. B 2010, 81, 035327. M. Leufgen, O. Rost, C. Gould, G. Schmidt, J. Geurts, L. W. Molenkamp, N. S. Oxtoby, M. Mas-Torrent, N. Crivillers, J. Veciana, C. Rovira, Org. Electron. 2008, 9, 1101. A. S. Dimitrov, K. Nagayama, Langmuir 1996, 12, 1303. R. J. Ashley, in Polymer Permeability (Ed. J. Comyn), Springer, Dordrecht, Netherlands 1985, pp. 269-308. K. Kuribara, H. Wang, N. Uchiyama, K. Fukuda, T. Yokota, U. Zschieschang, C. Jaye, D. Fischer, H. Klauk, T. Yamamoto, K. Takimiya, M. Ikeda, H. Kuwabara, T. Sekitani, Y.-L. Loo, T. Someya, Nat. Commun. 2012, 3, 723. Y. Xu, C. Liu, D. Khim, Y.-Y. Noh, Phys. Chem. Chem. Phys. 2015, DOI 10.1039/c4cp02413c. N. Lustig, W. E. Howard, Solid State Commun. 1989, 72, 59. H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa, Nature 2011, 475, 364. H. Pan, Y. Li, Y. Wu, P. Liu, B. S. Ong, S. Zhu, G. Xu, J. Am. Chem. Soc. 2007, 129, 4112. G. Horowitz, M. E. Hajlaoui, R. Hajlaoui, J. Appl. Phys. 2000, 87, 4456. A. A. Virkar, S. Mannsfeld, Z. Bao, N. Stingelin, Adv. Mater. 2010, 22, 3857. K. Chen, S. V Stoianov, J. Bangerter, H. D. Robinson, J. Colloid Interface Sci. 2010, 344, 315. D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, H. Sirringhaus, Nature 2014, 515, 384. N. A. Minder, S. Ono, Z. Chen, A. Facchetti, A. F. Morpurgo, Adv. Mater. 2012, 24, 503. N. Lustig, J. Kanicki, J. Appl. Phys. 1989, 65, 3951. M. Mas-Torrent, P. Hadley, S. T. Bromley, N. Crivillers, J. Veciana, C. Rovira, Appl. Phys. Lett. 2005, 86, 12110. J. Nagakubo, M. Ashizawa, T. Kawamoto, A. Tanioka, T. Mori, Phys. Chem. Chem. Phys. 2011, 13, 14370. A. Stesmans, Y. Wu, Solid State Commun. 1987, 62, 435. G. Horowitz, R. Hajlaoui, P. Delannoy, J. Phys. III 1995, 5, 355. A. Pierre, M. Sadeghi, M. M. Payne, A. Facchetti, J. E. Anthony, A. C. Arias, Adv. Mater. 2014, 26, 5722. H. Zhong, J. Smith, S. Rossbauer, A. J. P. White, T. D. Anthopoulos, M. Heeney, Adv. Mater. 2012, 24, 3205. T. Sakanoue, H. Sirringhaus, Nat. Mater. 2010, 9, 736. W. B. Jackson, J. M. Marshall, M. D. Moyer, Phys. Rev. B 1989, 39, 1164. Y. Diao, B. C.-K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld, Z. Bao, Nat. Mater. 2013, 12, 665. J. Zaumseil, H. Sirringhaus, Chem. Rev. 2007, 107, 1296. B. R. Hamilton, J. Smith, S. Ogier, M. Heeney, J. E. Anthony, I. Mcculloch, J. Veres, D. D. C. Bradley, T. D. Anthopoulos, Adv. Mater. 2009, 21, 1166. A. Brillante, I. Bilotti, R. G. Della Valle, E. Venuti, S. Milita, C. Dionigi, F. Borgatti, A. N. Lazar, F. Biscarini, M. Mas-Torrent, N. S. Oxtoby, N. Crivillers, J. Veciana, C. Rovira, M. Leufgen, G. Schmidt, L. W. Molenkamp, CrystEngComm 2008, 10, 1899. W. Xie, K. Willa, Y. Wu, R. Häusermann, K. Takimiya, B. Batlogg, C. D. Frisbie, Adv. Mater. 2013, 25, 3478. M. E. Roberts, S. C. B. Mannsfeld, N. Queralto, C. Reese, J. Locklin, W. Knoll, Z. Bao, Proc. Natl. Acad. Sci. USA 2008, 105, 12134. K. S. Karim, A. Nathan, M. Hack, W. I. Milne, IEEE Electron Device Lett. 2004, 25, 188. A. Brillante, I. Bilotti, R. G. Della Valle, E. Venuti, M. Mas-Torrent, C. Rovira, Y. Yamashita, Chem. Phys. Lett. 2012, 523, 74. C. Reese, Z. Bao, Mater. Today 2007, 10, 20. C. Piliego, D. Jarzab, G. Gigli, Z. Chen, A. Facchetti, M. A. Loi, Adv. Mater. 2009, 21, 1573. Y. Diao, L. Shaw, Z. Bao, S. C. B. Mannsfeld, Energy Environ. Sci. 2014, 7, 2145. T. Yamada, T. Hasegawa, M. Hiraoka, H. Matsui, Y. Tokura, G. Saito, Appl. Phys. Lett. 2008, 92, 233306. Naraso, J. Nishida, S. Ando, J. Yamaguchi, K. Itaka, H. Koinuma, H. Tada, S. Tokito, Y. Yamashita, J. Am. Chem. Soc. 2005, 127, 10142. V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, J. A. Rogers, Science 2004, 303, 1644. G. Lu, J. Blakesley, S. Himmelberger, P. Pingel, J. Frisch, I. Lieberwirth, I. Salzmann, M. Oehzelt, R. Di Pietro, A. Salleo, N. Koch, D. Neher, Nat. Commun. 2013, 4, 1588. J. Rivnay, L. H. Jimison, J. E. Northrup, M. F. Toney, R. Noriega, S. Lu, T. J. Marks, A. Facchetti, A. Salleo, Nat. Mater. 2009, 8, 952. K. Fukuda, Y. Takeda, M. Mizukami, D. Kumaki, S. Tokito, Sci. Rep. 2014, 4, 3947. S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, T. N. Jackson, Appl. Phys. Lett. 1998, 72, 1854. M. Mas-Torrent, C. Rovira, Chem. Rev. 2011, 111, 4833. V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, M. E. Gershenson, Phys. Rev. Lett. 2004, 93, 86602. C. Liu, T. Minari, X. Lu, A. Kumatani, K. Takimiya, K. Tsukagoshi, Adv. Mater. 2011, 23, 523. S. Fabiano, B. Pignataro, Chem. Soc. Rev. 2012, 41, 6859. P. Born, S. Blum, A. Munoz, T. Kraus, Langmuir 2011, 27, 8621. P. a Bobbert, A. Sharma, S. G. J. Mathijssen, M. Kemerink, D. M. de Leeuw, Adv. Mater. 2012, 24, 1146. 2007; 107 2013; 4 2013; 25 2009; 80 2000; 87 2004; 25 2010; 344 2008; 9 2014; 26 2011; 13 2008; 105 2013; 7 2012; 523 2011; 475 2011; 111 2010; 22 1989; 72 2014; 5 2014; 4 2013; 12 1985 2011; 23 2012; 24 2011; 27 2014; 7 2012; 22 2010; 9 1989; 39 2007; 18 2014; 515 2007; 129 2004; 303 2009; 21 1987; 51 1989; 65 2005; 86 2008; 10 2010; 81 2007; 10 2008; 92 2008; 93 1995; 5 1996; 12 2012; 3 1987; 62 2004; 93 2005; 127 2009; 8 2015 1998; 72 2012; 41 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
| References_xml | – reference: W. B. Jackson, J. M. Marshall, M. D. Moyer, Phys. Rev. B 1989, 39, 1164. – reference: G. Horowitz, R. Hajlaoui, P. Delannoy, J. Phys. III 1995, 5, 355. – reference: W. Xie, K. Willa, Y. Wu, R. Häusermann, K. Takimiya, B. Batlogg, C. D. Frisbie, Adv. Mater. 2013, 25, 3478. – reference: K. S. Karim, A. Nathan, M. Hack, W. I. Milne, IEEE Electron Device Lett. 2004, 25, 188. – reference: C. Reese, Z. Bao, Mater. Today 2007, 10, 20. – reference: K. Chen, S. V Stoianov, J. Bangerter, H. D. Robinson, J. Colloid Interface Sci. 2010, 344, 315. – reference: G. Lu, J. Blakesley, S. Himmelberger, P. Pingel, J. Frisch, I. Lieberwirth, I. Salzmann, M. Oehzelt, R. Di Pietro, A. Salleo, N. Koch, D. Neher, Nat. Commun. 2013, 4, 1588. – reference: A. Stesmans, Y. Wu, Solid State Commun. 1987, 62, 435. – reference: M. L. Hammock, O. Knopfmacher, B. D. Naab, J. B.-H. Tok, Z. Bao, ACS Nano 2013, 7, 3970. – reference: T. Sakanoue, H. Sirringhaus, Nat. Mater. 2010, 9, 736. – reference: K. Fukuda, Y. Takeda, M. Mizukami, D. Kumaki, S. Tokito, Sci. Rep. 2014, 4, 3947. – reference: G. Gelinck, P. Heremans, K. Nomoto, T. D. Anthopoulos, Adv. Mater. 2010, 22, 3778. – reference: J. Smith, R. Hamilton, M. Heeney, D. M. de Leeuw, E. Cantatore, J. E. Anthony, I. McCulloch, D. D. C. Bradley, T. D. Anthopoulos, Appl. Phys. Lett. 2008, 93, 253301. – reference: Y. Xu, C. Liu, D. Khim, Y.-Y. Noh, Phys. Chem. Chem. Phys. 2015, DOI 10.1039/c4cp02413c. – reference: N. Lustig, J. Kanicki, J. Appl. Phys. 1989, 65, 3951. – reference: B. R. Hamilton, J. Smith, S. Ogier, M. Heeney, J. E. Anthony, I. Mcculloch, J. Veres, D. D. C. Bradley, T. D. Anthopoulos, Adv. Mater. 2009, 21, 1166. – reference: S. Fabiano, B. Pignataro, Chem. Soc. Rev. 2012, 41, 6859. – reference: C. Van Berkel, M. J. Powell, Appl. Phys. Lett. 1987, 51, 1094. – reference: C. Piliego, D. Jarzab, G. Gigli, Z. Chen, A. Facchetti, M. A. Loi, Adv. Mater. 2009, 21, 1573. – reference: D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, H. Sirringhaus, Nature 2014, 515, 384. – reference: P. a Bobbert, A. Sharma, S. G. J. Mathijssen, M. Kemerink, D. M. de Leeuw, Adv. Mater. 2012, 24, 1146. – reference: G. Giri, R. Li, D.-M. Smilgies, E. Q. Li, Y. Diao, K. M. Lenn, M. Chiu, D. W. Lin, R. Allen, J. Reinspach, S. C. B. Mannsfeld, S. T. Thoroddsen, P. Clancy, Z. Bao, A. Amassian, Nat. Commun. 2014, 5, 3573. – reference: W. L. Kalb, B. Batlogg, Phys. Rev. B 2010, 81, 035327. – reference: A. S. Dimitrov, K. Nagayama, Langmuir 1996, 12, 1303. – reference: M. Leufgen, O. Rost, C. Gould, G. Schmidt, J. Geurts, L. W. Molenkamp, N. S. Oxtoby, M. Mas-Torrent, N. Crivillers, J. Veciana, C. Rovira, Org. Electron. 2008, 9, 1101. – reference: A. Brillante, I. Bilotti, R. G. Della Valle, E. Venuti, M. Mas-Torrent, C. Rovira, Y. Yamashita, Chem. Phys. Lett. 2012, 523, 74. – reference: M. Mas-Torrent, P. Hadley, S. T. Bromley, N. Crivillers, J. Veciana, C. Rovira, Appl. Phys. Lett. 2005, 86, 12110. – reference: A. Brillante, I. Bilotti, R. G. Della Valle, E. Venuti, S. Milita, C. Dionigi, F. Borgatti, A. N. Lazar, F. Biscarini, M. Mas-Torrent, N. S. Oxtoby, N. Crivillers, J. Veciana, C. Rovira, M. Leufgen, G. Schmidt, L. W. Molenkamp, CrystEngComm 2008, 10, 1899. – reference: Naraso, J. Nishida, S. Ando, J. Yamaguchi, K. Itaka, H. Koinuma, H. Tada, S. Tokito, Y. Yamashita, J. Am. Chem. Soc. 2005, 127, 10142. – reference: N. A. Minder, S. Ono, Z. Chen, A. Facchetti, A. F. Morpurgo, Adv. Mater. 2012, 24, 503. – reference: A. Pierre, M. Sadeghi, M. M. Payne, A. Facchetti, J. E. Anthony, A. C. Arias, Adv. Mater. 2014, 26, 5722. – reference: P. Born, S. Blum, A. Munoz, T. Kraus, Langmuir 2011, 27, 8621. – reference: G. Horowitz, M. E. Hajlaoui, R. Hajlaoui, J. Appl. Phys. 2000, 87, 4456. – reference: Y. Diao, B. C.-K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld, Z. Bao, Nat. Mater. 2013, 12, 665. – reference: V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, J. A. Rogers, Science 2004, 303, 1644. – reference: C. Liu, T. Minari, X. Lu, A. Kumatani, K. Takimiya, K. Tsukagoshi, Adv. Mater. 2011, 23, 523. – reference: S. G. J. Mathijssen, M.-J. Spijkman, A.-M. Andringa, P. A. van Hal, I. McCulloch, M. Kemerink, R. A. J. Janssen, D. M. de Leeuw, Adv. Mater. 2010, 22, 5105. – reference: B. Noda, H. Wada, K. Shibata, T. Yoshino, M. Katsuhara, I. Aoyagi, T. Mori, T. Taguchi, T. Kambayashi, K. Ishikawa, H. Takezoe, Nanotechnology 2007, 18, 424009. – reference: D. V. Lang, X. Chi, T. Siegrist, A. M. Sergent, A. P. Ramirez, Phys. Rev. Lett. 2004, 93, 86802. – reference: Y. Diao, L. Shaw, Z. Bao, S. C. B. Mannsfeld, Energy Environ. Sci. 2014, 7, 2145. – reference: H. Pan, Y. Li, Y. Wu, P. Liu, B. S. Ong, S. Zhu, G. Xu, J. Am. Chem. Soc. 2007, 129, 4112. – reference: T. Yamada, T. Hasegawa, M. Hiraoka, H. Matsui, Y. Tokura, G. Saito, Appl. Phys. Lett. 2008, 92, 233306. – reference: J. Zaumseil, H. Sirringhaus, Chem. Rev. 2007, 107, 1296. – reference: H. Zhong, J. Smith, S. Rossbauer, A. J. P. White, T. D. Anthopoulos, M. Heeney, Adv. Mater. 2012, 24, 3205. – reference: V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, M. E. Gershenson, Phys. Rev. Lett. 2004, 93, 86602. – reference: J. Rivnay, L. H. Jimison, J. E. Northrup, M. F. Toney, R. Noriega, S. Lu, T. J. Marks, A. Facchetti, A. Salleo, Nat. Mater. 2009, 8, 952. – reference: N. Lustig, W. E. Howard, Solid State Commun. 1989, 72, 59. – reference: X. Zhang, H. Bronstein, A. J. Kronemeijer, J. Smith, Y. Kim, R. J. Kline, L. J. Richter, T. D. Anthopoulos, H. Sirringhaus, K. Song, M. Heeney, W. Zhang, I. McCulloch, D. M. DeLongchamp, Nat. Commun. 2013, 4, 2238. – reference: A. A. Virkar, S. Mannsfeld, Z. Bao, N. Stingelin, Adv. Mater. 2010, 22, 3857. – reference: S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, T. N. Jackson, Appl. Phys. Lett. 1998, 72, 1854. – reference: M. Ramesh, H.-C. Lin, C.-W. Chu, J. Mater. Chem. 2012, 22, 16506. – reference: M. Mas-Torrent, C. Rovira, Chem. Rev. 2011, 111, 4833. – reference: H. Xie, H. Alves, A. F. Morpurgo, Phys. Rev. B 2009, 80, 245305. – reference: M. E. Roberts, S. C. B. Mannsfeld, N. Queralto, C. Reese, J. Locklin, W. Knoll, Z. Bao, Proc. Natl. Acad. Sci. USA 2008, 105, 12134. – reference: K. Kuribara, H. Wang, N. Uchiyama, K. Fukuda, T. Yokota, U. Zschieschang, C. Jaye, D. Fischer, H. Klauk, T. Yamamoto, K. Takimiya, M. Ikeda, H. Kuwabara, T. Sekitani, Y.-L. Loo, T. Someya, Nat. Commun. 2012, 3, 723. – reference: R. J. Ashley, in Polymer Permeability (Ed. J. Comyn), Springer, Dordrecht, Netherlands 1985, pp. 269-308. – reference: J. Nagakubo, M. Ashizawa, T. Kawamoto, A. Tanioka, T. Mori, Phys. Chem. Chem. Phys. 2011, 13, 14370. – reference: H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa, Nature 2011, 475, 364. – volume: 515 start-page: 384 year: 2014 publication-title: Nature – volume: 65 start-page: 3951 year: 1989 publication-title: J. Appl. Phys. – volume: 81 start-page: 035327 year: 2010 publication-title: Phys. Rev. B – volume: 10 start-page: 20 year: 2007 publication-title: Mater. Today – start-page: 269 year: 1985 end-page: 308 – volume: 523 start-page: 74 year: 2012 publication-title: Chem. Phys. Lett. – volume: 111 start-page: 4833 year: 2011 publication-title: Chem. Rev. – volume: 8 start-page: 952 year: 2009 publication-title: Nat. Mater. – volume: 87 start-page: 4456 year: 2000 publication-title: J. Appl. Phys. – volume: 4 start-page: 1588 year: 2013 publication-title: Nat. Commun. – volume: 22 start-page: 16506 year: 2012 publication-title: J. Mater. Chem. – volume: 72 start-page: 1854 year: 1998 publication-title: Appl. Phys. Lett. – volume: 93 start-page: 253301 year: 2008 publication-title: Appl. Phys. Lett. – volume: 72 start-page: 59 year: 1989 publication-title: Solid State Commun. – volume: 92 start-page: 233306 year: 2008 publication-title: Appl. Phys. Lett. – volume: 25 start-page: 188 year: 2004 publication-title: IEEE Electron Device Lett. – volume: 39 start-page: 1164 year: 1989 publication-title: Phys. Rev. B – volume: 10 start-page: 1899 year: 2008 publication-title: CrystEngComm – volume: 127 start-page: 10142 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 1166 year: 2009 publication-title: Adv. Mater. – volume: 22 start-page: 3778 year: 2010 publication-title: Adv. Mater. – volume: 344 start-page: 315 year: 2010 publication-title: J. Colloid Interface Sci. – volume: 93 start-page: 86602 year: 2004 publication-title: Phys. Rev. Lett. – volume: 86 start-page: 12110 year: 2005 publication-title: Appl. Phys. Lett. – volume: 129 start-page: 4112 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 14370 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 25 start-page: 3478 year: 2013 publication-title: Adv. Mater. – volume: 24 start-page: 1146 year: 2012 publication-title: Adv. Mater. – volume: 4 start-page: 2238 year: 2013 publication-title: Nat. Commun. – volume: 3 start-page: 723 year: 2012 publication-title: Nat. Commun. – volume: 41 start-page: 6859 year: 2012 publication-title: Chem. Soc. Rev. – volume: 26 start-page: 5722 year: 2014 publication-title: Adv. Mater. – volume: 7 start-page: 2145 year: 2014 publication-title: Energy Environ. Sci. – volume: 24 start-page: 3205 year: 2012 publication-title: Adv. Mater. – volume: 475 start-page: 364 year: 2011 publication-title: Nature – volume: 5 start-page: 3573 year: 2014 publication-title: Nat. Commun. – volume: 24 start-page: 503 year: 2012 publication-title: Adv. Mater. – volume: 303 start-page: 1644 year: 2004 publication-title: Science – volume: 4 start-page: 3947 year: 2014 publication-title: Sci. Rep. – volume: 22 start-page: 3857 year: 2010 publication-title: Adv. Mater. – volume: 27 start-page: 8621 year: 2011 publication-title: Langmuir – volume: 9 start-page: 736 year: 2010 publication-title: Nat. Mater. – volume: 22 start-page: 5105 year: 2010 publication-title: Adv. Mater. – year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 7 start-page: 3970 year: 2013 publication-title: ACS Nano – volume: 18 start-page: 424009 year: 2007 publication-title: Nanotechnology – volume: 62 start-page: 435 year: 1987 publication-title: Solid State Commun. – volume: 93 start-page: 86802 year: 2004 publication-title: Phys. Rev. Lett. – volume: 107 start-page: 1296 year: 2007 publication-title: Chem. Rev. – volume: 80 start-page: 245305 year: 2009 publication-title: Phys. Rev. B – volume: 21 start-page: 1573 year: 2009 publication-title: Adv. Mater. – volume: 105 start-page: 12134 year: 2008 publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 1303 year: 1996 publication-title: Langmuir – volume: 51 start-page: 1094 year: 1987 publication-title: Appl. Phys. Lett. – volume: 23 start-page: 523 year: 2011 publication-title: Adv. Mater. – volume: 9 start-page: 1101 year: 2008 publication-title: Org. Electron. – volume: 12 start-page: 665 year: 2013 publication-title: Nat. Mater. – volume: 5 start-page: 355 year: 1995 publication-title: J. Phys. III – ident: e_1_2_6_47_1 doi: 10.1002/adma.201002682 – ident: e_1_2_6_30_1 doi: 10.1016/j.cplett.2011.12.026 – ident: e_1_2_6_28_1 doi: 10.1002/adma.201200859 – ident: e_1_2_6_37_1 doi: 10.1038/ncomms3238 – ident: e_1_2_6_49_1 doi: 10.1038/nmat2825 – ident: e_1_2_6_3_1 doi: 10.1039/C4EE00688G – ident: e_1_2_6_16_1 doi: 10.1039/c2cs35074b – ident: e_1_2_6_48_1 doi: 10.1063/1.121205 – ident: e_1_2_6_6_1 doi: 10.1038/nmat3650 – ident: e_1_2_6_55_1 doi: 10.1103/PhysRevB.39.1164 – ident: e_1_2_6_18_1 doi: 10.1063/1.1848179 – ident: e_1_2_6_33_1 doi: 10.1007/978-94-009-4858-7_7 – ident: e_1_2_6_41_1 doi: 10.1103/PhysRevB.81.035327 – ident: e_1_2_6_5_1 doi: 10.1002/adma.201401520 – ident: e_1_2_6_10_1 doi: 10.1038/nmat2570 – ident: e_1_2_6_31_1 doi: 10.1039/b810993a – ident: e_1_2_6_17_1 doi: 10.1002/adma.201001865 – ident: e_1_2_6_52_1 doi: 10.1039/c2jm32561f – ident: e_1_2_6_29_1 doi: 10.1063/1.3050525 – ident: e_1_2_6_34_1 doi: 10.1021/cr0501543 – ident: e_1_2_6_11_1 doi: 10.1038/srep03947 – ident: e_1_2_6_42_1 doi: 10.1063/1.373091 – ident: e_1_2_6_36_1 doi: 10.1038/nature13854 – ident: e_1_2_6_2_1 doi: 10.1038/nature10313 – ident: e_1_2_6_39_1 doi: 10.1103/PhysRevLett.93.086802 – ident: e_1_2_6_43_1 doi: 10.1051/jp3:1995132 – ident: e_1_2_6_12_1 doi: 10.1038/ncomms1721 – ident: e_1_2_6_38_1 doi: 10.1002/adma.200903559 – ident: e_1_2_6_4_1 doi: 10.1039/c4cp02413c – ident: e_1_2_6_8_1 doi: 10.1021/ja067879o – ident: e_1_2_6_35_1 doi: 10.1126/science.1094196 – ident: e_1_2_6_54_1 doi: 10.1063/1.98751 – ident: e_1_2_6_13_1 doi: 10.1002/adma.201104580 – ident: e_1_2_6_25_1 doi: 10.1021/la9502251 – ident: e_1_2_6_27_1 doi: 10.1002/adma.200801725 – ident: e_1_2_6_50_1 doi: 10.1073/pnas.0802105105 – ident: e_1_2_6_1_1 doi: 10.1016/S1369-7021(07)70016-0 – ident: e_1_2_6_22_1 doi: 10.1063/1.2940593 – ident: e_1_2_6_32_1 doi: 10.1021/cr100142w – ident: e_1_2_6_58_1 doi: 10.1016/0038-1098(89)90879-X – ident: e_1_2_6_45_1 doi: 10.1103/PhysRevB.80.245305 – ident: e_1_2_6_57_1 doi: 10.1016/0038-1098(87)91050-7 – ident: e_1_2_6_53_1 doi: 10.1063/1.343361 – ident: e_1_2_6_14_1 doi: 10.1002/adma.200803207 – ident: e_1_2_6_26_1 doi: 10.1021/la2006138 – ident: e_1_2_6_9_1 doi: 10.1038/ncomms2587 – ident: e_1_2_6_56_1 doi: 10.1109/LED.2004.825154 – ident: e_1_2_6_46_1 doi: 10.1002/adma.201103960 – ident: e_1_2_6_51_1 doi: 10.1021/nn305903q – ident: e_1_2_6_40_1 doi: 10.1002/adma.201300886 – ident: e_1_2_6_7_1 doi: 10.1038/ncomms4573 – ident: e_1_2_6_44_1 doi: 10.1103/PhysRevLett.93.086602 – ident: e_1_2_6_19_1 doi: 10.1016/j.orgel.2008.08.011 – ident: e_1_2_6_20_1 doi: 10.1088/0957-4484/18/42/424009 – ident: e_1_2_6_21_1 doi: 10.1021/ja051755e – ident: e_1_2_6_15_1 doi: 10.1002/adma.200903193 – ident: e_1_2_6_24_1 doi: 10.1016/j.jcis.2010.01.010 – ident: e_1_2_6_23_1 doi: 10.1039/c1cp21507h |
| SSID | ssj0017734 |
| Score | 2.5054364 |
| Snippet | In electronics, the field‐effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications... In electronics, the field-effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications... |
| SourceID | swepub proquest crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2379 |
| SubjectTerms | charge carrier mobility Circuits Coating device stability Devices Electric fields Electronics Field effect transistors Inverters Organic field-effect transistors Semiconductor devices temperature-independent transport Thin films thin-film coating |
| Title | Single Crystal-Like Performance in Solution-Coated Thin-Film Organic Field-Effect Transistors |
| URI | https://api.istex.fr/ark:/67375/WNG-45K75KZQ-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201502274 https://www.proquest.com/docview/1808054678 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127774 |
| Volume | 26 |
| WOSCitedRecordID | wos000374258100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMctaHmAB-6IcpOREDxFS1w7Th-rloC0Uo3BRsWLZcc2ihZSlG4I3vYR9hn3SXZO3GbrA0KCp9wcx_Il5398-ZmQVyIDUZtmPBqakYhA_4-iLBMm8gi9S7TJTNt1cTiT83m2WIz2rqziD3yIrsMNW0b7v8YGrs1q5xIaqq3HleQgaBh4VtdJn0HlFT3Sn-7nB7NuJEHKMLKcJjjHK1lswI0x29mOYcsw9TGPf22rzkAS3RaxrRXK7_x_-u-S22sFSsehytwj11x9n9y6wiV8QNwnOFSOTprfIB6r89OzWXnk6N7lIgNa1nTTowaPJ0uQrJbiJqBwlZfVdxoWeRY0xylycDNgkmlrG1s0yeohOcjffp68j9b7MUSFiDmPuAP_JdHMap6aeOhjboU10vPYgFckTRE7-FsxyxArWDCbgm8F_pv0GorBezZ8RHr1snaPCU0KsJgjzY2XBQdJYryVCZOptwki3s2ARJvCUMUaVo57ZlQqYJaZwuxTXfYNyJsu_I-A6fhjyNdt2XbBdHOEk9ukUF_m7xQXu1Lsfv2o9gfk5abwFTQ5HEfRtVuerFSCLE4BFiaDyEKt6GJDWve0PByrZfNNVSWSuqXEr7K2LvwlcWo8zT90V0_-5aWn5Cacp1GLo3xGesfNiXtObhQ_j8tV82LdOi4AKoERaA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1bb9MwFMctWJFgD9zRyrgYCcFTtMR14vSxaglDzaoxtlHtxYpjG0XL0indELztI_AZ-SScE6cZfUBIiKfKqeuk9nHO__jyMyGvwxhEbRRzb6CGoQf6f-jFcag8i9C7IFOxaoYujlMxm8Xz-XC_XU2Ie2EcH6IbcMOe0byvsYPjgPTONTU00xa3koOiYRBa3SQ9DrYERt6bHCRHaTeVIISbWo4CXOQVzFfkRp_trJew5pl6WMnf1mWnQ4muq9jGDSX3_sMfuE_uthqUjpzRPCA3TPWQbP5GJnxEzCf4KA0d199BPpY_r36kxamh-9fbDGhR0dWYGnw9XoBo1RSPAYVUUpRn1G3zzGmCi-TgogMl08Y7NnCS5WNylLw7HO967YkMXh76nHvcQAQTZExnPFL-wPpch1oJy30FcZFQuW_gfcU0Q7BgznQE0RVEcMJm0A7WssETslEtKrNFaJCDzxxmXFmRcxAlymoRMBFZHSDkXfWJt2oNmbe4cjw1o5QOtMwkVp_sqq9P3nb5zx2o44853zSN22XL6lNc3iZC-Xn2XvJwKsLpyUd50CevVq0vodPhTEpWmcXlUgZI4wzBx8RQmDOLrjTkdU-K45Fc1F9kWSCrWwi8K2uM4S8PJ0eTZK9LPf2XH70kt3cP91KZfphNt8kduB55DZzyGdm4qC_Nc3Ir_3pRLOsXbVf5BYKNFVg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3LjtMwFIYtaBGCBXdEuRoJwcqaxHXidFm1BFBLVQZmqGZjxbGNognpKJ1BsOMReEaehHPiNEMXCAmxipw4TuJLzn98-UzIsygBURsngg31KGKg_0csSSLNHELvwkwnuum6OJzLxSJZrUbLdjYhroXxfIiuww1bRvO_xgZuT4zbO6eGZsbhUnJQNBxcq4ukL3AnmR7pT_fTg3k3lCClH1qOQ5zkFa625MaA7-2msGOZ-pjJX3dlp0eJ7qrYxgyl1__DB9wg11oNSse-0twkF2x1i1z9jUx4m9j3cCgtndTfQD6WP7__mBfHli7PlxnQoqLbPjW4PFmDaDUUtwGFUFqUn6lf5pnTFCfJwUkPSqaNdWzgJJs75CB9-WHymrU7MrA8CoRgwoIHE2bcZCLWwdAFwkRGSycCDX6R1Hlg4X_FDUewYM5NDN4VeHDSZVAOzvHhXdKr1pW9R2iYg80cZUI7mQsQJdoZGXIZOxMi5F0PCNuWhspbXDnumlEqD1rmCrNPddk3IC-6-Cce1PHHmM-bwu2iZfUxTm-Tkfq4eKVENJPR7Oid2h-Qp9vSV9DocCQlq-z6bKNCpHFGYGMSSMxXiy415HVPi8OxWtefVFkgq1tKfCpvKsNfXk6Np-nbLnT_X256Qi4vp6mav1nMHpArcDpmDZvyIemd1mf2EbmUfzktNvXjtqX8Au5zFNM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Crystal%E2%80%90Like+Performance+in+Solution%E2%80%90Coated+Thin%E2%80%90Film+Organic+Field%E2%80%90Effect+Transistors&rft.jtitle=Advanced+functional+materials&rft.au=del+Pozo%2C+Freddy+G.&rft.au=Fabiano%2C+Simone&rft.au=Pfattner%2C+Raphael&rft.au=Georgakopoulos%2C+Stamatis&rft.date=2016-04-12&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=26&rft.issue=14&rft.spage=2379&rft.epage=2386&rft_id=info:doi/10.1002%2Fadfm.201502274&rft.externalDBID=10.1002%252Fadfm.201502274&rft.externalDocID=ADFM201502274 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |