Partial AUC Estimation and Regression

Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to discriminate diseased from nondiseased states. The partial area under the receiver operating characteristic (ROC) curve is a measure of diagnostic test ac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biometrics Ročník 59; číslo 3; s. 614 - 623
Hlavní autoři: Dodd, Lori E., Pepe, Margaret S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K Blackwell Publishing 01.09.2003
International Biometric Society
Témata:
ISSN:0006-341X, 1541-0420
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to discriminate diseased from nondiseased states. The partial area under the receiver operating characteristic (ROC) curve is a measure of diagnostic test accuracy. We present an interpretation of the partial area under the curve (AUC), which gives rise to a nonparametric estimator. This estimator is more robust than existing estimators, which make parametric assumptions. We show that the robustness is gained with only a moderate loss in efficiency. We describe a regression modeling framework for making inference about covariate effects on the partial AUC. Such models can refine knowledge about test accuracy. Model parameters can be estimated using binary regression methods. We use the regression framework to compare two prostate-specific antigen biomarkers and to evaluate the dependence of biomarker accuracy on the time prior to clinical diagnosis of prostate cancer.
Bibliografie:istex:406D685DB7B1705DC79CB0A5B8EAC7A3DADEAAB2
ark:/67375/WNG-7685KQD3-S
ArticleID:BIOM071
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0006-341X
1541-0420
DOI:10.1111/1541-0420.00071