Partial AUC Estimation and Regression

Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to discriminate diseased from nondiseased states. The partial area under the receiver operating characteristic (ROC) curve is a measure of diagnostic test ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics Jg. 59; H. 3; S. 614 - 623
Hauptverfasser: Dodd, Lori E., Pepe, Margaret S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K Blackwell Publishing 01.09.2003
International Biometric Society
Schlagworte:
ISSN:0006-341X, 1541-0420
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to discriminate diseased from nondiseased states. The partial area under the receiver operating characteristic (ROC) curve is a measure of diagnostic test accuracy. We present an interpretation of the partial area under the curve (AUC), which gives rise to a nonparametric estimator. This estimator is more robust than existing estimators, which make parametric assumptions. We show that the robustness is gained with only a moderate loss in efficiency. We describe a regression modeling framework for making inference about covariate effects on the partial AUC. Such models can refine knowledge about test accuracy. Model parameters can be estimated using binary regression methods. We use the regression framework to compare two prostate-specific antigen biomarkers and to evaluate the dependence of biomarker accuracy on the time prior to clinical diagnosis of prostate cancer.
AbstractList Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to discriminate diseased from nondiseased states. The partial area under the receiver operating characteristic (ROC) curve is a measure of diagnostic test accuracy. We present an interpretation of the partial area under the curve (AUC), which gives rise to a nonparametric estimator. This estimator is more robust than existing estimators, which make parametric assumptions. We show that the robustness is gained with only a moderate loss in efficiency. We describe a regression modeling framework for making inference about covariate effects on the partial AUC. Such models can refine knowledge about test accuracy. Model parameters can be estimated using binary regression methods. We use the regression framework to compare two prostate-specific antigen biomarkers and to evaluate the dependence of biomarker accuracy on the time prior to clinical diagnosis of prostate cancer.
Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to discriminate diseased from nondiseased states. The partial area under the receiver operating characteristic (ROC) curve is a measure of diagnostic test accuracy. We present an interpretation of the partial area under the curve (AUC), which gives rise to a nonparametric estimator. This estimator is more robust than existing estimators, which make parametric assumptions. We show that the robustness is gained with only a moderate loss in efficiency. We describe a regression modeling framework for making inference about covariate effects on the partial AUC. Such models can refine knowledge about test accuracy. Model parameters can be estimated using binary regression methods. We use the regression framework to compare two prostate-specific antigen biomarkers and to evaluate the dependence of biomarker accuracy on the time prior to clinical diagnosis of prostate cancer.Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to discriminate diseased from nondiseased states. The partial area under the receiver operating characteristic (ROC) curve is a measure of diagnostic test accuracy. We present an interpretation of the partial area under the curve (AUC), which gives rise to a nonparametric estimator. This estimator is more robust than existing estimators, which make parametric assumptions. We show that the robustness is gained with only a moderate loss in efficiency. We describe a regression modeling framework for making inference about covariate effects on the partial AUC. Such models can refine knowledge about test accuracy. Model parameters can be estimated using binary regression methods. We use the regression framework to compare two prostate-specific antigen biomarkers and to evaluate the dependence of biomarker accuracy on the time prior to clinical diagnosis of prostate cancer.
Summary .  Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to discriminate diseased from nondiseased states. The partial area under the receiver operating characteristic (ROC) curve is a measure of diagnostic test accuracy. We present an interpretation of the partial area under the curve (AUC), which gives rise to a nonparametric estimator. This estimator is more robust than existing estimators, which make parametric assumptions. We show that the robustness is gained with only a moderate loss in efficiency. We describe a regression modeling framework for making inference about covariate effects on the partial AUC. Such models can refine knowledge about test accuracy. Model parameters can be estimated using binary regression methods. We use the regression framework to compare two prostate‐specific antigen biomarkers and to evaluate the dependence of biomarker accuracy on the time prior to clinical diagnosis of prostate cancer.
Author Pepe, Margaret S.
Dodd, Lori E.
Author_xml – sequence: 1
  givenname: Lori E.
  surname: Dodd
  fullname: Dodd, Lori E.
– sequence: 2
  givenname: Margaret S.
  surname: Pepe
  fullname: Pepe, Margaret S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/14601762$$D View this record in MEDLINE/PubMed
BookMark eNqFkNtPwjAUxhuDkYs--2IML_o2aNfb9oiISETxRvSt6UpnhmPDdkT57y0M92Bi7Etzzvl-5_I1QS3LMw3AMYId5F4XUYI8SHzYgRBytAcaVaYGGi7HPEzQax00rZ27MKTQPwB1RBhEnPkNcHYvTZHItN2b9tsDWyQLWSR51pbZrP2o34y21oWHYD-WqdVHu78FpleD5_61N54MR_3e2FMUurG-j-Mo0GHIIx1qQjHzSayYDFAIIyjjYCa1pjH3Y18FDLFISSah25gERCka4RY4L_suTf6x0rYQi8QqnaYy0_nKCo4w55gHTni6E66ihZ6JpXGLm7X4OcwJaClQJrfW6FiopNieVhiZpAJBsTFQbOwSG7vE1kDHdX9xVes_CVISn0mq1__JxcVocltiJyU2t0VuKgyzkBLMXdkry4kt9FdVluZdMOcAFS93Q8FZQG8eLrF4wt-tvJXA
CitedBy_id crossref_primary_10_1016_j_knosys_2023_110936
crossref_primary_10_1128_CVI_00409_10
crossref_primary_10_1080_14697688_2019_1667519
crossref_primary_10_1002_pros_23090
crossref_primary_10_1016_j_envsoft_2018_10_004
crossref_primary_10_1038_s41592_023_01971_3
crossref_primary_10_1186_1471_2105_11_314
crossref_primary_10_1177_0962280209341624
crossref_primary_10_1002_sim_70192
crossref_primary_10_1016_S1076_6332_03_00814_6
crossref_primary_10_1109_TIE_2019_2956418
crossref_primary_10_1080_03610920701215811
crossref_primary_10_3390_molecules22081366
crossref_primary_10_1177_117693510500100108
crossref_primary_10_1093_g3journal_jkab248
crossref_primary_10_1016_j_ijcard_2020_05_039
crossref_primary_10_1161_CIRCULATIONAHA_105_594929
crossref_primary_10_3390_ijgi5070115
crossref_primary_10_1371_journal_pone_0147964
crossref_primary_10_1016_j_jspi_2011_06_025
crossref_primary_10_1007_s11277_016_3190_3
crossref_primary_10_1093_ornithapp_duaf035
crossref_primary_10_1080_00949655_2011_604635
crossref_primary_10_1007_s11258_021_01139_z
crossref_primary_10_1109_TKDE_2009_50
crossref_primary_10_1002_ijc_25289
crossref_primary_10_1016_j_cct_2009_03_003
crossref_primary_10_1016_j_radonc_2010_12_002
crossref_primary_10_1097_SLA_0b013e318204a892
crossref_primary_10_1007_s42519_019_0039_6
crossref_primary_10_1080_10543406_2018_1535502
crossref_primary_10_1371_journal_pcbi_1007276
crossref_primary_10_1007_s10994_013_5425_9
crossref_primary_10_1080_03610918_2012_625333
crossref_primary_10_1080_14659891_2023_2199850
crossref_primary_10_1002_sim_3512
crossref_primary_10_1080_10543406_2014_920874
crossref_primary_10_1177_0962280217718866
crossref_primary_10_1118_1_4816310
crossref_primary_10_1007_s10985_012_9235_3
crossref_primary_10_3390_s24154850
crossref_primary_10_1016_j_eswa_2022_117028
crossref_primary_10_1111_j_1541_0420_2006_00620_x
crossref_primary_10_1177_1179299X17732007
crossref_primary_10_1007_s00330_019_06340_3
crossref_primary_10_1007_s10115_012_0558_x
crossref_primary_10_1158_0008_5472_CAN_04_2962
crossref_primary_10_1007_s10044_012_0299_1
crossref_primary_10_1016_j_jkss_2013_05_003
crossref_primary_10_1111_j_0006_341X_2004_00200_x
crossref_primary_10_1016_j_eujim_2013_03_002
crossref_primary_10_1080_19466315_2012_692514
crossref_primary_10_1111_j_1467_9876_2010_00713_x
crossref_primary_10_1111_2041_210X_13479
crossref_primary_10_1177_0962280214551190
crossref_primary_10_1088_0967_3334_36_1_133
crossref_primary_10_1177_09622802211037070
crossref_primary_10_1007_s00439_019_02098_2
crossref_primary_10_1080_03610926_2025_2553723
crossref_primary_10_1371_journal_pone_0303413
crossref_primary_10_1002_prot_20446
crossref_primary_10_1371_journal_pone_0133059
crossref_primary_10_1186_s12911_023_02382_2
crossref_primary_10_1016_j_catena_2023_107618
crossref_primary_10_1155_2019_8953530
crossref_primary_10_1007_s10994_009_5119_5
crossref_primary_10_1111_j_1467_789X_2009_00591_x
crossref_primary_10_1177_1536867X0900900102
crossref_primary_10_1177_1536867X0900900101
crossref_primary_10_1016_j_ecss_2011_06_014
crossref_primary_10_1177_09622802211060515
crossref_primary_10_1111_j_1541_0420_2012_01783_x
crossref_primary_10_3390_math12132118
crossref_primary_10_1177_0962280212452199
crossref_primary_10_1002_bimj_201400023
crossref_primary_10_1016_j_ijge_2018_06_002
crossref_primary_10_1016_j_acra_2008_07_010
crossref_primary_10_1007_s42965_020_00073_x
crossref_primary_10_1002_sim_6816
crossref_primary_10_1007_s10384_017_0540_y
crossref_primary_10_1108_09526861311297325
crossref_primary_10_1093_nar_gkx291
crossref_primary_10_1088_1361_6560_aab4b1
crossref_primary_10_1186_1472_6890_14_29
crossref_primary_10_1089_omi_2006_10_499
crossref_primary_10_1002_sim_2103
crossref_primary_10_1016_j_csda_2013_02_032
crossref_primary_10_1016_j_mambio_2018_04_006
crossref_primary_10_1158_1940_6207_CAPR_13_0013
crossref_primary_10_1016_j_acra_2012_09_004
crossref_primary_10_1016_j_healun_2007_04_013
crossref_primary_10_1007_s10994_020_05880_w
crossref_primary_10_1016_j_ajo_2014_10_019
crossref_primary_10_1089_big_2020_0069
crossref_primary_10_1038_labinvest_2010_194
crossref_primary_10_1111_dar_13353
crossref_primary_10_1016_j_acra_2012_09_009
crossref_primary_10_1002_sim_8204
crossref_primary_10_1016_j_csda_2014_03_008
crossref_primary_10_1177_09622802241262521
crossref_primary_10_1109_TNNLS_2021_3116269
crossref_primary_10_1200_JCO_2006_07_4187
crossref_primary_10_1146_annurev_statistics_040720_022432
crossref_primary_10_1186_s12911_019_1014_6
crossref_primary_10_1016_j_fertnstert_2005_11_054
crossref_primary_10_1016_j_patrec_2013_11_015
crossref_primary_10_3390_informatics8040068
crossref_primary_10_1093_aje_kwn099
crossref_primary_10_3233_JIFS_222879
crossref_primary_10_1007_s00406_018_0967_2
crossref_primary_10_3390_land13081177
crossref_primary_10_1049_iet_com_2013_1070
crossref_primary_10_1002_sim_3335
crossref_primary_10_1111_j_1365_2893_2009_01183_x
crossref_primary_10_1117_1_2841017
crossref_primary_10_1177_09622802251345343
crossref_primary_10_1016_j_acra_2005_04_005
crossref_primary_10_1007_s10985_012_9238_0
crossref_primary_10_1007_s10614_023_10479_z
crossref_primary_10_1016_j_csda_2014_12_002
crossref_primary_10_1038_s41467_024_49094_3
crossref_primary_10_1200_JCO_2015_61_7779
crossref_primary_10_3109_00365521_2012_658857
crossref_primary_10_1016_j_ijar_2009_09_005
crossref_primary_10_1109_TIT_2007_901152
crossref_primary_10_1080_10543406_2020_1832107
crossref_primary_10_1016_j_patcog_2011_03_022
crossref_primary_10_1038_ijo_2009_35
crossref_primary_10_1002_cjs_10093
crossref_primary_10_1007_s11306_012_0482_9
crossref_primary_10_1038_s41598_018_37127_z
crossref_primary_10_1586_epr_09_83
crossref_primary_10_1177_09622802231151210
crossref_primary_10_1002_sim_5777
crossref_primary_10_1073_pnas_2424203122
crossref_primary_10_1191_1740774506cn130oa
crossref_primary_10_1186_s12911_020_1052_0
crossref_primary_10_1111_biom_12240
crossref_primary_10_1002_sim_6863
crossref_primary_10_1177_09622802211038754
crossref_primary_10_1016_j_geosus_2025_100333
crossref_primary_10_1007_s40262_025_01559_4
crossref_primary_10_1002_sam_11261
crossref_primary_10_1080_02664763_2015_1070810
crossref_primary_10_1177_0962280217742542
crossref_primary_10_1111_j_1467_842X_2012_00648_x
crossref_primary_10_1080_14779072_2021_1888715
crossref_primary_10_1002_sim_7966
crossref_primary_10_1016_j_ijrobp_2012_02_004
crossref_primary_10_1016_j_jclinepi_2015_01_003
crossref_primary_10_1371_journal_pone_0125957
crossref_primary_10_1534_genetics_119_302019
crossref_primary_10_1586_14789450_2_6_847
crossref_primary_10_1109_TPAMI_2022_3145392
crossref_primary_10_1007_s12561_021_09311_9
crossref_primary_10_1007_s00180_022_01309_1
crossref_primary_10_1038_s41467_023_38682_4
crossref_primary_10_1007_s00704_019_02812_0
crossref_primary_10_1002_sim_3121
crossref_primary_10_1145_3554729
crossref_primary_10_1016_j_ecolmodel_2007_11_008
crossref_primary_10_1016_j_jvlc_2012_02_002
crossref_primary_10_1177_09622802231176030
crossref_primary_10_1002_sim_10268
crossref_primary_10_1016_j_jcte_2014_06_003
crossref_primary_10_1097_JTO_0000000000000447
crossref_primary_10_1007_s00432_018_2735_0
crossref_primary_10_1002_sim_9912
crossref_primary_10_1093_biostatistics_kxr010
crossref_primary_10_1016_j_ophtha_2012_06_009
crossref_primary_10_1162_NECO_a_00766
crossref_primary_10_1007_s12351_024_00852_7
crossref_primary_10_1109_TCBB_2017_2691325
crossref_primary_10_1016_j_jspi_2010_07_004
crossref_primary_10_1081_BIP_200035475
crossref_primary_10_1007_s11425_012_4455_2
crossref_primary_10_1007_s10664_020_09861_4
crossref_primary_10_1002_bimj_201000153
crossref_primary_10_1177_09622802241267356
crossref_primary_10_1002_pst_70001
crossref_primary_10_1016_j_compenvurbsys_2017_04_002
crossref_primary_10_1177_193229681300700422
crossref_primary_10_1080_15598608_2012_719800
crossref_primary_10_1109_TCBB_2010_55
crossref_primary_10_1002_jps_24162
crossref_primary_10_1158_1940_6207_CAPR_15_0033
crossref_primary_10_1016_j_clnu_2016_12_020
crossref_primary_10_1359_jbmr_081201
crossref_primary_10_1016_j_jspi_2011_11_015
crossref_primary_10_1136_jcp_2008_061010
crossref_primary_10_1162_NECO_a_00972
crossref_primary_10_1080_13658816_2013_862623
crossref_primary_10_1002_bimj_202000036
crossref_primary_10_1016_j_compbiomed_2021_104886
crossref_primary_10_1158_1078_0432_CCR_06_1593
crossref_primary_10_1007_s00180_012_0321_5
crossref_primary_10_1016_j_neucom_2021_02_015
crossref_primary_10_1016_j_tranon_2018_07_016
crossref_primary_10_1155_2013_306908
crossref_primary_10_1007_s10985_012_9233_5
crossref_primary_10_1155_2013_863592
crossref_primary_10_1177_117693510700300032
crossref_primary_10_1186_1755_8794_6_S2_S1
crossref_primary_10_1016_j_jspi_2023_02_002
Cites_doi 10.2214/ajr.168.1.8976911
10.1093/jnci/90.6.440
10.1002/sim.4780081011
10.1016/S1076-6332(97)80161-4
10.1111/j.0006-341X.2000.00352.x
10.1111/j.0006-341X.2000.01082.x
10.1198/016214503000198
10.1198/016214501753168136
10.1097/00004424-199209000-00015
10.1056/NEJM200105033441806
10.1198/016214502388618915
10.1111/1467-9876.00170
10.1093/oso/9780198509844.001.0001
10.1093/biomet/76.3.585
10.2307/2531595
10.1148/radiology.201.3.8939225
10.1002/(SICI)1097-0258(19960730)15:14<1575::AID-SIM283>3.0.CO;2-2
10.1177/0272989X8900900307
10.1016/S0090-4295(01)01497-2
10.1177/0272989X9901900303
10.1002/(SICI)1097-0258(19980515)17:9<1033::AID-SIM784>3.0.CO;2-Z
ContentType Journal Article
Copyright Copyright 2003 The International Biometric Society
Copyright_xml – notice: Copyright 2003 The International Biometric Society
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/1541-0420.00071
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 623
ExternalDocumentID 14601762
10_1111_1541_0420_00071
BIOM071
3695437
ark_67375_WNG_7685KQD3_S
Genre article
Research Support, U.S. Gov't, P.H.S
Journal Article
Comparative Study
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM54438
– fundername: NHLBI NIH HHS
  grantid: T32 HL07183
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAMMB
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAYCA
AAZKR
AAZSN
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFFHD
AFGKR
AFKRA
AFVYC
AFWVQ
AFZJQ
AGLNM
AGQPQ
AGTJU
AGXDD
AHGBF
AHMBA
AIAGR
AIDQK
AIDYY
AIHAF
AIURR
AJAOE
AJBYB
AJNCP
AJXKR
ALAGY
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
H13
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AGORE
ALIPV
ALUQN
PUEGO
AAYXX
CITATION
O8X
3V.
AAHHS
ABTAH
ACCFJ
ADZOD
AEEZP
AELPN
AEQDE
AEUQT
AFFTP
AFPWT
AIBGX
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
JSODD
NPM
PKN
VQA
WRC
7X8
ID FETCH-LOGICAL-c5041-223fb8e997be9e453624fc6a8190b0af8daee5f72f2c8616bca6a0154484cc5b3
IEDL.DBID DRFUL
ISICitedReferencesCount 271
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000185220100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-341X
IngestDate Sun Nov 09 12:01:52 EST 2025
Wed Feb 19 01:50:45 EST 2025
Sat Nov 29 03:53:21 EST 2025
Tue Nov 18 22:28:58 EST 2025
Sun Sep 21 06:21:09 EDT 2025
Thu Jul 03 21:22:35 EDT 2025
Tue Nov 11 03:32:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5041-223fb8e997be9e453624fc6a8190b0af8daee5f72f2c8616bca6a0154484cc5b3
Notes istex:406D685DB7B1705DC79CB0A5B8EAC7A3DADEAAB2
ark:/67375/WNG-7685KQD3-S
ArticleID:BIOM071
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://zenodo.org/record/1230587
PMID 14601762
PQID 71377378
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_71377378
pubmed_primary_14601762
crossref_citationtrail_10_1111_1541_0420_00071
crossref_primary_10_1111_1541_0420_00071
wiley_primary_10_1111_1541_0420_00071_BIOM071
jstor_primary_3695437
istex_primary_ark_67375_WNG_7685KQD3_S
PublicationCentury 2000
PublicationDate September 2003
PublicationDateYYYYMMDD 2003-09-01
PublicationDate_xml – month: 09
  year: 2003
  text: September 2003
PublicationDecade 2000
PublicationPlace 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K
PublicationPlace_xml – name: 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K
– name: United States
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2003
Publisher Blackwell Publishing
International Biometric Society
Publisher_xml – name: Blackwell Publishing
– name: International Biometric Society
References Wieand, S., Gail, M., James, B., and James, K. (1989). A family of nonparametric statistics for comparing diagnostic markers with paired or unpaired data. Biometrika 76, 585 - 592.
Baker, S. (2000). Identifying combinations of cancer markers for further study as triggers of early intervention. Biometrics 56, 1082 - 1087.
Hanley, J. and Hajian-Tilaki, K. (1997). Sampling variability of nonparametric estimates of the areas under receiver operating characteristic curves: An update. Academic Radiology 17, 49 - 58.
Heinonen, O., Albanes, D., Vitarmo, J., and Taylor, P. (1998). Prostate cancer and supplementation with α-tocopherol and β-carotene: Incidence and mortality in a controlled trial. Journal of the National Cancer Institute 90, 440 - 447.
Dodd, L. and Pepe, M. (2003). Semi-parametric regression for the area under the receiver operating characteristic curve. Journal of the American Statistical Association 98, 409 - 417.
Dorfman, D., Berbaum, K., and Metz, C. (1992). Receiver operating characteristic analysis: Generalization to the population of readers and patients with the jackknife method. Investigative Radiology 27, 723 - 731.
Obuchowski, N. (1997). Testing for equivalence of diagnostic tests. American Journal of Roentgenology 168, 13 - 17.
Barry, M. (2001). Prostate-specific-antigen testing for early diagnosis of prostate cancer. New England Journal of Medicine 344, 1373 - 1377.
Cai, T. and Pepe, M. (2003). Semi-parametric ROC analysis to evaluate biomarkers for disease. Journal of the American Statistical Association 97, 1099 - 1107.
McClish, D. (1989). Analyzing a portion of the ROC curve. Medical Decision Making 9, 190 - 195.
Lehmann, E. (1997). Testing Statistical Hypotheses, Chapter 6, 314 - 321. New York : Springer.
Thompson, M. L. and Zucchini, W. (1989). On the statistical analysis of ROC curves. Statistics in Medicine 8, 1277 - 1290.
Tanguay, S., Begin, L., Elhilali, H., Karakiewicz, P., and Aprikian, A. (2002). Comparative evaluation of total PSA, free/total PSA, and complexed PSA in prostate cancer detection. Adult Urology 59, 261 - 265.
Pepe, M. (2000). An interpretation for the ROC curve and inference using GLM procedures. Biometrics 56, 352 - 359.
DeLong, E. R., DeLong, D., and Clarke-Pearson, D. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 44, 837 - 845.
Heagerty, P. and Pepe, M. (1999). Semiparametric estimation of regression quantiles with application to standardizing weight for height and age in US children. Applied Statistics 48, 533 - 551.
Metz, C., Herman, B., and Shen, J.-H. (1998). Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data. Statistics in Medicine 17, 1033 - 1053.
Etzioni, R., Pepe, M., Longton, G., Hu, C., and Goodman, G. (1999). Incorporating the time dimension in receiver operating characteristic curves. Medical Decision Making 19, 242 - 251.
Jiang, Y., Metz, C., and Nishikawa, R. (1996). A receiver operating characteristic partial area index for highly sensitive diagnostic tests. Radiology 201, 745 - 750.
Hanley, J. (1996). The use of the "binormal" model for parametric ROC analysis of quantitative diagnostic tests. Statistics of Medicine 15, 1575 - 1585.
Pepe, M. (2003). Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford: Oxford University Press.
Baker, S. and Pinsky, P. (2001). A proposed design and analysis for comparing digital and analog mammography: Special receiver operating characteristic methods for cancer screening. Journal of the American Statistical Association 96, 421 - 428.
1997; 168
2001; 344
1998; 17
2002; 59
1989; 76
2001
2000; 56
1999; 19
1999; 48
1989; 9
1989; 8
1988; 44
1997
1997; 17
1998; 90
2003
1992; 27
1996; 201
1996; 15
2003; 97
2001; 96
2003; 98
e_1_2_10_12_1
e_1_2_10_23_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_24_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_22_1
e_1_2_10_20_1
Lehmann E. (e_1_2_10_16_1) 1997
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
Heinonen O. (e_1_2_10_14_1) 1998; 90
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
Pepe M. (e_1_2_10_21_1) 2003
e_1_2_10_7_1
e_1_2_10_15_1
References_xml – reference: Dodd, L. and Pepe, M. (2003). Semi-parametric regression for the area under the receiver operating characteristic curve. Journal of the American Statistical Association 98, 409 - 417.
– reference: Pepe, M. (2000). An interpretation for the ROC curve and inference using GLM procedures. Biometrics 56, 352 - 359.
– reference: Baker, S. (2000). Identifying combinations of cancer markers for further study as triggers of early intervention. Biometrics 56, 1082 - 1087.
– reference: Pepe, M. (2003). Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford: Oxford University Press.
– reference: Jiang, Y., Metz, C., and Nishikawa, R. (1996). A receiver operating characteristic partial area index for highly sensitive diagnostic tests. Radiology 201, 745 - 750.
– reference: McClish, D. (1989). Analyzing a portion of the ROC curve. Medical Decision Making 9, 190 - 195.
– reference: Tanguay, S., Begin, L., Elhilali, H., Karakiewicz, P., and Aprikian, A. (2002). Comparative evaluation of total PSA, free/total PSA, and complexed PSA in prostate cancer detection. Adult Urology 59, 261 - 265.
– reference: Metz, C., Herman, B., and Shen, J.-H. (1998). Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data. Statistics in Medicine 17, 1033 - 1053.
– reference: Heagerty, P. and Pepe, M. (1999). Semiparametric estimation of regression quantiles with application to standardizing weight for height and age in US children. Applied Statistics 48, 533 - 551.
– reference: Lehmann, E. (1997). Testing Statistical Hypotheses, Chapter 6, 314 - 321. New York : Springer.
– reference: Baker, S. and Pinsky, P. (2001). A proposed design and analysis for comparing digital and analog mammography: Special receiver operating characteristic methods for cancer screening. Journal of the American Statistical Association 96, 421 - 428.
– reference: DeLong, E. R., DeLong, D., and Clarke-Pearson, D. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 44, 837 - 845.
– reference: Hanley, J. and Hajian-Tilaki, K. (1997). Sampling variability of nonparametric estimates of the areas under receiver operating characteristic curves: An update. Academic Radiology 17, 49 - 58.
– reference: Hanley, J. (1996). The use of the "binormal" model for parametric ROC analysis of quantitative diagnostic tests. Statistics of Medicine 15, 1575 - 1585.
– reference: Heinonen, O., Albanes, D., Vitarmo, J., and Taylor, P. (1998). Prostate cancer and supplementation with α-tocopherol and β-carotene: Incidence and mortality in a controlled trial. Journal of the National Cancer Institute 90, 440 - 447.
– reference: Cai, T. and Pepe, M. (2003). Semi-parametric ROC analysis to evaluate biomarkers for disease. Journal of the American Statistical Association 97, 1099 - 1107.
– reference: Thompson, M. L. and Zucchini, W. (1989). On the statistical analysis of ROC curves. Statistics in Medicine 8, 1277 - 1290.
– reference: Barry, M. (2001). Prostate-specific-antigen testing for early diagnosis of prostate cancer. New England Journal of Medicine 344, 1373 - 1377.
– reference: Etzioni, R., Pepe, M., Longton, G., Hu, C., and Goodman, G. (1999). Incorporating the time dimension in receiver operating characteristic curves. Medical Decision Making 19, 242 - 251.
– reference: Wieand, S., Gail, M., James, B., and James, K. (1989). A family of nonparametric statistics for comparing diagnostic markers with paired or unpaired data. Biometrika 76, 585 - 592.
– reference: Dorfman, D., Berbaum, K., and Metz, C. (1992). Receiver operating characteristic analysis: Generalization to the population of readers and patients with the jackknife method. Investigative Radiology 27, 723 - 731.
– reference: Obuchowski, N. (1997). Testing for equivalence of diagnostic tests. American Journal of Roentgenology 168, 13 - 17.
– volume: 201
  start-page: 745
  year: 1996
  end-page: 750
  article-title: A receiver operating characteristic partial area index for highly sensitive diagnostic tests
  publication-title: Radiology
– volume: 344
  start-page: 1373
  year: 2001
  end-page: 1377
  article-title: Prostate‐specific‐antigen testing for early diagnosis of prostate cancer
  publication-title: New England Journal of Medicine
– volume: 59
  start-page: 261
  year: 2002
  end-page: 265
  article-title: Comparative evaluation of total PSA, free/total PSA, and complexed PSA in prostate cancer detection
  publication-title: Adult Urology
– volume: 19
  start-page: 242
  year: 1999
  end-page: 251
  article-title: Incorporating the time dimension in receiver operating characteristic curves
  publication-title: Medical Decision Making
– volume: 56
  start-page: 1082
  year: 2000
  end-page: 1087
  article-title: Identifying combinations of cancer markers for further study as triggers of early intervention
  publication-title: Biometrics
– year: 2001
– volume: 17
  start-page: 1033
  year: 1998
  end-page: 1053
  article-title: Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously‐distributed data
  publication-title: Statistics in Medicine
– volume: 98
  start-page: 409
  year: 2003
  end-page: 417
  article-title: Semi‐parametric regression for the area under the receiver operating characteristic curve
  publication-title: Journal of the American Statistical Association
– volume: 168
  start-page: 13
  year: 1997
  end-page: 17
  article-title: Testing for equivalence of diagnostic tests
  publication-title: American Journal of Roentgenology
– year: 2003
– volume: 96
  start-page: 421
  year: 2001
  end-page: 428
  article-title: A proposed design and analysis for comparing digital and analog mammography: Special receiver operating characteristic methods for cancer screening
  publication-title: Journal of the American Statistical Association
– volume: 9
  start-page: 190
  year: 1989
  end-page: 195
  article-title: Analyzing a portion of the ROC curve
  publication-title: Medical Decision Making
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
  publication-title: Biometrics
– volume: 56
  start-page: 352
  year: 2000
  end-page: 359
  article-title: An interpretation for the ROC curve and inference using GLM procedures
  publication-title: Biometrics
– volume: 15
  start-page: 1575
  year: 1996
  end-page: 1585
  article-title: The use of the “binormal” model for parametric ROC analysis of quantitative diagnostic tests
  publication-title: Statistics of Medicine
– volume: 76
  start-page: 585
  year: 1989
  end-page: 592
  article-title: A family of nonparametric statistics for comparing diagnostic markers with paired or unpaired data
  publication-title: Biometrika
– volume: 97
  start-page: 1099
  year: 2003
  end-page: 1107
  article-title: Semi‐parametric ROC analysis to evaluate biomarkers for disease
  publication-title: Journal of the American Statistical Association
– volume: 17
  start-page: 49
  year: 1997
  end-page: 58
  article-title: Sampling variability of nonparametric estimates of the areas under receiver operating characteristic curves: An update
  publication-title: Academic Radiology
– volume: 48
  start-page: 533
  year: 1999
  end-page: 551
  article-title: Semiparametric estimation of regression quantiles with application to standardizing weight for height and age in US children
  publication-title: Applied Statistics
– volume: 90
  start-page: 440
  year: 1998
  end-page: 447
  article-title: Prostate cancer and supplementation with α‐tocopherol and β‐carotene: Incidence and mortality in a controlled trial
  publication-title: Journal of the National Cancer Institute
– volume: 8
  start-page: 1277
  year: 1989
  end-page: 1290
  article-title: On the statistical analysis of ROC curves
  publication-title: Statistics in Medicine
– volume: 27
  start-page: 723
  year: 1992
  end-page: 731
  article-title: Receiver operating characteristic analysis: Generalization to the population of readers and patients with the jackknife method
  publication-title: Investigative Radiology
– start-page: 314
  year: 1997
  end-page: 321
– ident: e_1_2_10_19_1
  doi: 10.2214/ajr.168.1.8976911
– volume: 90
  start-page: 440
  year: 1998
  ident: e_1_2_10_14_1
  article-title: Prostate cancer and supplementation with α‐tocopherol and β‐carotene: Incidence and mortality in a controlled trial
  publication-title: Journal of the National Cancer Institute
  doi: 10.1093/jnci/90.6.440
– start-page: 314
  volume-title: Testing Statistical Hypotheses
  year: 1997
  ident: e_1_2_10_16_1
– ident: e_1_2_10_23_1
  doi: 10.1002/sim.4780081011
– ident: e_1_2_10_12_1
  doi: 10.1016/S1076-6332(97)80161-4
– ident: e_1_2_10_20_1
  doi: 10.1111/j.0006-341X.2000.00352.x
– ident: e_1_2_10_2_1
  doi: 10.1111/j.0006-341X.2000.01082.x
– ident: e_1_2_10_8_1
  doi: 10.1198/016214503000198
– ident: e_1_2_10_3_1
  doi: 10.1198/016214501753168136
– ident: e_1_2_10_9_1
  doi: 10.1097/00004424-199209000-00015
– ident: e_1_2_10_4_1
  doi: 10.1056/NEJM200105033441806
– ident: e_1_2_10_7_1
– ident: e_1_2_10_5_1
  doi: 10.1198/016214502388618915
– ident: e_1_2_10_13_1
  doi: 10.1111/1467-9876.00170
– volume-title: Statistical Evaluation of Medical Tests for Classification and Prediction
  year: 2003
  ident: e_1_2_10_21_1
  doi: 10.1093/oso/9780198509844.001.0001
– ident: e_1_2_10_24_1
  doi: 10.1093/biomet/76.3.585
– ident: e_1_2_10_6_1
  doi: 10.2307/2531595
– ident: e_1_2_10_15_1
  doi: 10.1148/radiology.201.3.8939225
– ident: e_1_2_10_11_1
  doi: 10.1002/(SICI)1097-0258(19960730)15:14<1575::AID-SIM283>3.0.CO;2-2
– ident: e_1_2_10_17_1
  doi: 10.1177/0272989X8900900307
– ident: e_1_2_10_22_1
  doi: 10.1016/S0090-4295(01)01497-2
– ident: e_1_2_10_10_1
  doi: 10.1177/0272989X9901900303
– ident: e_1_2_10_18_1
  doi: 10.1002/(SICI)1097-0258(19980515)17:9<1033::AID-SIM784>3.0.CO;2-Z
SSID ssj0009502
Score 2.2449174
Snippet Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to discriminate...
Summary .  Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to...
SourceID proquest
pubmed
crossref
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 614
SubjectTerms Area Under Curve
Biometrics
Biometry
Diagnostic testing
Estimation bias
Estimation methods
Estimators
Humans
Male
Mann-Whitney U-statistic
Maximum likelihood estimation
Modeling
Models, Statistical
Parametric models
Prostate cancer
Prostate-Specific Antigen - blood
Prostatic Neoplasms - blood
Prostatic Neoplasms - diagnosis
Receiver operating characteristic curve
Regression
Regression Analysis
Standard error
Statistics, Nonparametric
Title Partial AUC Estimation and Regression
URI https://api.istex.fr/ark:/67375/WNG-7685KQD3-S/fulltext.pdf
https://www.jstor.org/stable/3695437
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1541-0420.00071
https://www.ncbi.nlm.nih.gov/pubmed/14601762
https://www.proquest.com/docview/71377378
Volume 59
WOSCitedRecordID wos000185220100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9RAEJ_AnSTng8iBWuSjD2p8qem1u93towKnBDgRPby3zXZv64OkR-7EwH_PzG6vgMEYEp-aNNNmOx-dmfY3vwV4RcOPpZU8sskYGxTd60VYHLHIxDaWGjNa5tCEp4diMJCjUX5cowlpFsbzQzQf3Cgy3PuaAlwXs1tBjrkfG2GWEDQrpinydoLey1vQ3j3pDw9vMe_GnjKcQF6sN6r5fQjO88ct7qSmNmn5co5SvK_-vFvOunzUX_4PT_IUntTFaPjee88KLNiqC0t-e8qrLjw-ajhdZ13oUF3qaZ1X4fUxuRxdO9wJ9_Ckn4AMdTUOT-wPD66t1mDY3_u28ymqd1yIDI9xEVgrlIW0eS4Km1vGMbux0mSayoYi1qUca2t5KZIyMTLrZYXRmXb7mElmDC_SZ9CqJpV9AWFZjlMRo8lTVlBTpLWg3lFj-ZBnKB3Au7mylanpyGlXjDM1b0tILYrUopxaAnjbXHDumTj-LvrGWa-R09OfBGATXH0ffFTYYfGDL7up-hrAmjNvI5hmOWepCGB7bm6F4Ub_UHRlJxczJYihMRUygOfeC27WwrC3xdQSQOSM_a9Fqg_7n4_wuP5A-ZfQcYBCh3PbgNav6YXdhEfmN7rAdAsWxUhu1TFwDRn9-60
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB4hygo4AFtYCM8cFsQlq7Rx4uTIq4Bou7wKvVmO63AABVRgtfx7Zuw0FARCSJwiRePImUdmxvn8GeA3bX7MdBx6ut7DBkXWah4WR8xTvvZjiRktMmjCiyZvt-NuNxneC2P5IcoFN4oM872mAKcF6aEox-SPnTCrEzbLp23kFYbOhF5e2T1tdJpD1Lu-5QwnlBerdQuCH8LzvHnEq9xUITX_H8AU3ytAX9ezJiE1pr_jVWZgqihH3S3rPz9hROdV-GEPqHyqwmSrZHW9r8IEVaaW2HkW1o_J6WhsZ8fdw5t2D6Qr8557qq8svDafg05j73znwCvOXPBU6OMksFrI0lgnCU91olmI-Y1lKpJUOKS-zOKe1DrMeD2rqziqRamSkTQnmcVMqTANfsFofpvrBXCzrBdwH40esJTaIik5dY8SC4gkQmkH_gy0LVRBSE7nYtyIQWNCahGkFmHU4sBmOeDOcnF8LLphzFfKyf41Qdh4KC7b-wJ7rPDoZDcQZw7MGfuWgkGUhCzgDqwN7C0w4Ogvisz17eO94MTRGPDYgXnrBi9zYdjdYnJxwDPW_mySYvvwbwuvi1-UX4Pxg_NWUzQP20dLMGHghQb1tgyjD_1HvQJj6h-6Q3-1CIVnXzD-tQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+AUC+estimation+and+regression&rft.jtitle=Biometrics&rft.au=Dodd%2C+Lori+E&rft.au=Pepe%2C+Margaret+S&rft.date=2003-09-01&rft.issn=0006-341X&rft.volume=59&rft.issue=3&rft.spage=614&rft_id=info:doi/10.1111%2F1541-0420.00071&rft_id=info%3Apmid%2F14601762&rft.externalDocID=14601762
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon