Partial AUC Estimation and Regression
Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to discriminate diseased from nondiseased states. The partial area under the receiver operating characteristic (ROC) curve is a measure of diagnostic test ac...
Saved in:
| Published in: | Biometrics Vol. 59; no. 3; pp. 614 - 623 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K
Blackwell Publishing
01.09.2003
International Biometric Society |
| Subjects: | |
| ISSN: | 0006-341X, 1541-0420 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to discriminate diseased from nondiseased states. The partial area under the receiver operating characteristic (ROC) curve is a measure of diagnostic test accuracy. We present an interpretation of the partial area under the curve (AUC), which gives rise to a nonparametric estimator. This estimator is more robust than existing estimators, which make parametric assumptions. We show that the robustness is gained with only a moderate loss in efficiency. We describe a regression modeling framework for making inference about covariate effects on the partial AUC. Such models can refine knowledge about test accuracy. Model parameters can be estimated using binary regression methods. We use the regression framework to compare two prostate-specific antigen biomarkers and to evaluate the dependence of biomarker accuracy on the time prior to clinical diagnosis of prostate cancer. |
|---|---|
| AbstractList | Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to discriminate diseased from nondiseased states. The partial area under the receiver operating characteristic (ROC) curve is a measure of diagnostic test accuracy. We present an interpretation of the partial area under the curve (AUC), which gives rise to a nonparametric estimator. This estimator is more robust than existing estimators, which make parametric assumptions. We show that the robustness is gained with only a moderate loss in efficiency. We describe a regression modeling framework for making inference about covariate effects on the partial AUC. Such models can refine knowledge about test accuracy. Model parameters can be estimated using binary regression methods. We use the regression framework to compare two prostate‐specific antigen biomarkers and to evaluate the dependence of biomarker accuracy on the time prior to clinical diagnosis of prostate cancer. Summary . Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to discriminate diseased from nondiseased states. The partial area under the receiver operating characteristic (ROC) curve is a measure of diagnostic test accuracy. We present an interpretation of the partial area under the curve (AUC), which gives rise to a nonparametric estimator. This estimator is more robust than existing estimators, which make parametric assumptions. We show that the robustness is gained with only a moderate loss in efficiency. We describe a regression modeling framework for making inference about covariate effects on the partial AUC. Such models can refine knowledge about test accuracy. Model parameters can be estimated using binary regression methods. We use the regression framework to compare two prostate‐specific antigen biomarkers and to evaluate the dependence of biomarker accuracy on the time prior to clinical diagnosis of prostate cancer. Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to discriminate diseased from nondiseased states. The partial area under the receiver operating characteristic (ROC) curve is a measure of diagnostic test accuracy. We present an interpretation of the partial area under the curve (AUC), which gives rise to a nonparametric estimator. This estimator is more robust than existing estimators, which make parametric assumptions. We show that the robustness is gained with only a moderate loss in efficiency. We describe a regression modeling framework for making inference about covariate effects on the partial AUC. Such models can refine knowledge about test accuracy. Model parameters can be estimated using binary regression methods. We use the regression framework to compare two prostate-specific antigen biomarkers and to evaluate the dependence of biomarker accuracy on the time prior to clinical diagnosis of prostate cancer.Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to discriminate diseased from nondiseased states. The partial area under the receiver operating characteristic (ROC) curve is a measure of diagnostic test accuracy. We present an interpretation of the partial area under the curve (AUC), which gives rise to a nonparametric estimator. This estimator is more robust than existing estimators, which make parametric assumptions. We show that the robustness is gained with only a moderate loss in efficiency. We describe a regression modeling framework for making inference about covariate effects on the partial AUC. Such models can refine knowledge about test accuracy. Model parameters can be estimated using binary regression methods. We use the regression framework to compare two prostate-specific antigen biomarkers and to evaluate the dependence of biomarker accuracy on the time prior to clinical diagnosis of prostate cancer. |
| Author | Pepe, Margaret S. Dodd, Lori E. |
| Author_xml | – sequence: 1 givenname: Lori E. surname: Dodd fullname: Dodd, Lori E. – sequence: 2 givenname: Margaret S. surname: Pepe fullname: Pepe, Margaret S. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/14601762$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkNtPwjAUxhuDkYs--2IML_o2aNfb9oiISETxRvSt6UpnhmPDdkT57y0M92Bi7Etzzvl-5_I1QS3LMw3AMYId5F4XUYI8SHzYgRBytAcaVaYGGi7HPEzQax00rZ27MKTQPwB1RBhEnPkNcHYvTZHItN2b9tsDWyQLWSR51pbZrP2o34y21oWHYD-WqdVHu78FpleD5_61N54MR_3e2FMUurG-j-Mo0GHIIx1qQjHzSayYDFAIIyjjYCa1pjH3Y18FDLFISSah25gERCka4RY4L_suTf6x0rYQi8QqnaYy0_nKCo4w55gHTni6E66ihZ6JpXGLm7X4OcwJaClQJrfW6FiopNieVhiZpAJBsTFQbOwSG7vE1kDHdX9xVes_CVISn0mq1__JxcVocltiJyU2t0VuKgyzkBLMXdkry4kt9FdVluZdMOcAFS93Q8FZQG8eLrF4wt-tvJXA |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2023_110936 crossref_primary_10_1128_CVI_00409_10 crossref_primary_10_1080_14697688_2019_1667519 crossref_primary_10_1002_pros_23090 crossref_primary_10_1016_j_envsoft_2018_10_004 crossref_primary_10_1038_s41592_023_01971_3 crossref_primary_10_1186_1471_2105_11_314 crossref_primary_10_1177_0962280209341624 crossref_primary_10_1002_sim_70192 crossref_primary_10_1016_S1076_6332_03_00814_6 crossref_primary_10_1109_TIE_2019_2956418 crossref_primary_10_1080_03610920701215811 crossref_primary_10_3390_molecules22081366 crossref_primary_10_1177_117693510500100108 crossref_primary_10_1093_g3journal_jkab248 crossref_primary_10_1016_j_ijcard_2020_05_039 crossref_primary_10_1161_CIRCULATIONAHA_105_594929 crossref_primary_10_3390_ijgi5070115 crossref_primary_10_1371_journal_pone_0147964 crossref_primary_10_1016_j_jspi_2011_06_025 crossref_primary_10_1007_s11277_016_3190_3 crossref_primary_10_1093_ornithapp_duaf035 crossref_primary_10_1080_00949655_2011_604635 crossref_primary_10_1007_s11258_021_01139_z crossref_primary_10_1109_TKDE_2009_50 crossref_primary_10_1002_ijc_25289 crossref_primary_10_1016_j_cct_2009_03_003 crossref_primary_10_1016_j_radonc_2010_12_002 crossref_primary_10_1097_SLA_0b013e318204a892 crossref_primary_10_1007_s42519_019_0039_6 crossref_primary_10_1080_10543406_2018_1535502 crossref_primary_10_1371_journal_pcbi_1007276 crossref_primary_10_1007_s10994_013_5425_9 crossref_primary_10_1080_03610918_2012_625333 crossref_primary_10_1080_14659891_2023_2199850 crossref_primary_10_1002_sim_3512 crossref_primary_10_1080_10543406_2014_920874 crossref_primary_10_1177_0962280217718866 crossref_primary_10_1118_1_4816310 crossref_primary_10_1007_s10985_012_9235_3 crossref_primary_10_3390_s24154850 crossref_primary_10_1016_j_eswa_2022_117028 crossref_primary_10_1111_j_1541_0420_2006_00620_x crossref_primary_10_1177_1179299X17732007 crossref_primary_10_1007_s00330_019_06340_3 crossref_primary_10_1007_s10115_012_0558_x crossref_primary_10_1158_0008_5472_CAN_04_2962 crossref_primary_10_1007_s10044_012_0299_1 crossref_primary_10_1016_j_jkss_2013_05_003 crossref_primary_10_1111_j_0006_341X_2004_00200_x crossref_primary_10_1016_j_eujim_2013_03_002 crossref_primary_10_1080_19466315_2012_692514 crossref_primary_10_1111_j_1467_9876_2010_00713_x crossref_primary_10_1111_2041_210X_13479 crossref_primary_10_1177_0962280214551190 crossref_primary_10_1088_0967_3334_36_1_133 crossref_primary_10_1177_09622802211037070 crossref_primary_10_1007_s00439_019_02098_2 crossref_primary_10_1080_03610926_2025_2553723 crossref_primary_10_1371_journal_pone_0303413 crossref_primary_10_1002_prot_20446 crossref_primary_10_1371_journal_pone_0133059 crossref_primary_10_1186_s12911_023_02382_2 crossref_primary_10_1016_j_catena_2023_107618 crossref_primary_10_1155_2019_8953530 crossref_primary_10_1007_s10994_009_5119_5 crossref_primary_10_1111_j_1467_789X_2009_00591_x crossref_primary_10_1177_1536867X0900900102 crossref_primary_10_1177_1536867X0900900101 crossref_primary_10_1016_j_ecss_2011_06_014 crossref_primary_10_1177_09622802211060515 crossref_primary_10_1111_j_1541_0420_2012_01783_x crossref_primary_10_3390_math12132118 crossref_primary_10_1177_0962280212452199 crossref_primary_10_1002_bimj_201400023 crossref_primary_10_1016_j_ijge_2018_06_002 crossref_primary_10_1016_j_acra_2008_07_010 crossref_primary_10_1007_s42965_020_00073_x crossref_primary_10_1002_sim_6816 crossref_primary_10_1007_s10384_017_0540_y crossref_primary_10_1108_09526861311297325 crossref_primary_10_1093_nar_gkx291 crossref_primary_10_1088_1361_6560_aab4b1 crossref_primary_10_1186_1472_6890_14_29 crossref_primary_10_1089_omi_2006_10_499 crossref_primary_10_1002_sim_2103 crossref_primary_10_1016_j_csda_2013_02_032 crossref_primary_10_1016_j_mambio_2018_04_006 crossref_primary_10_1158_1940_6207_CAPR_13_0013 crossref_primary_10_1016_j_acra_2012_09_004 crossref_primary_10_1016_j_healun_2007_04_013 crossref_primary_10_1007_s10994_020_05880_w crossref_primary_10_1016_j_ajo_2014_10_019 crossref_primary_10_1089_big_2020_0069 crossref_primary_10_1038_labinvest_2010_194 crossref_primary_10_1111_dar_13353 crossref_primary_10_1016_j_acra_2012_09_009 crossref_primary_10_1002_sim_8204 crossref_primary_10_1016_j_csda_2014_03_008 crossref_primary_10_1177_09622802241262521 crossref_primary_10_1109_TNNLS_2021_3116269 crossref_primary_10_1200_JCO_2006_07_4187 crossref_primary_10_1146_annurev_statistics_040720_022432 crossref_primary_10_1186_s12911_019_1014_6 crossref_primary_10_1016_j_fertnstert_2005_11_054 crossref_primary_10_1016_j_patrec_2013_11_015 crossref_primary_10_3390_informatics8040068 crossref_primary_10_1093_aje_kwn099 crossref_primary_10_3233_JIFS_222879 crossref_primary_10_1007_s00406_018_0967_2 crossref_primary_10_3390_land13081177 crossref_primary_10_1049_iet_com_2013_1070 crossref_primary_10_1002_sim_3335 crossref_primary_10_1111_j_1365_2893_2009_01183_x crossref_primary_10_1117_1_2841017 crossref_primary_10_1177_09622802251345343 crossref_primary_10_1016_j_acra_2005_04_005 crossref_primary_10_1007_s10985_012_9238_0 crossref_primary_10_1007_s10614_023_10479_z crossref_primary_10_1016_j_csda_2014_12_002 crossref_primary_10_1038_s41467_024_49094_3 crossref_primary_10_1200_JCO_2015_61_7779 crossref_primary_10_3109_00365521_2012_658857 crossref_primary_10_1016_j_ijar_2009_09_005 crossref_primary_10_1109_TIT_2007_901152 crossref_primary_10_1080_10543406_2020_1832107 crossref_primary_10_1016_j_patcog_2011_03_022 crossref_primary_10_1038_ijo_2009_35 crossref_primary_10_1002_cjs_10093 crossref_primary_10_1007_s11306_012_0482_9 crossref_primary_10_1038_s41598_018_37127_z crossref_primary_10_1586_epr_09_83 crossref_primary_10_1177_09622802231151210 crossref_primary_10_1002_sim_5777 crossref_primary_10_1073_pnas_2424203122 crossref_primary_10_1191_1740774506cn130oa crossref_primary_10_1186_s12911_020_1052_0 crossref_primary_10_1111_biom_12240 crossref_primary_10_1002_sim_6863 crossref_primary_10_1177_09622802211038754 crossref_primary_10_1016_j_geosus_2025_100333 crossref_primary_10_1007_s40262_025_01559_4 crossref_primary_10_1002_sam_11261 crossref_primary_10_1080_02664763_2015_1070810 crossref_primary_10_1177_0962280217742542 crossref_primary_10_1111_j_1467_842X_2012_00648_x crossref_primary_10_1080_14779072_2021_1888715 crossref_primary_10_1002_sim_7966 crossref_primary_10_1016_j_ijrobp_2012_02_004 crossref_primary_10_1016_j_jclinepi_2015_01_003 crossref_primary_10_1371_journal_pone_0125957 crossref_primary_10_1534_genetics_119_302019 crossref_primary_10_1586_14789450_2_6_847 crossref_primary_10_1109_TPAMI_2022_3145392 crossref_primary_10_1007_s12561_021_09311_9 crossref_primary_10_1007_s00180_022_01309_1 crossref_primary_10_1038_s41467_023_38682_4 crossref_primary_10_1007_s00704_019_02812_0 crossref_primary_10_1002_sim_3121 crossref_primary_10_1145_3554729 crossref_primary_10_1016_j_ecolmodel_2007_11_008 crossref_primary_10_1016_j_jvlc_2012_02_002 crossref_primary_10_1177_09622802231176030 crossref_primary_10_1002_sim_10268 crossref_primary_10_1016_j_jcte_2014_06_003 crossref_primary_10_1097_JTO_0000000000000447 crossref_primary_10_1007_s00432_018_2735_0 crossref_primary_10_1002_sim_9912 crossref_primary_10_1093_biostatistics_kxr010 crossref_primary_10_1016_j_ophtha_2012_06_009 crossref_primary_10_1162_NECO_a_00766 crossref_primary_10_1007_s12351_024_00852_7 crossref_primary_10_1109_TCBB_2017_2691325 crossref_primary_10_1016_j_jspi_2010_07_004 crossref_primary_10_1081_BIP_200035475 crossref_primary_10_1007_s11425_012_4455_2 crossref_primary_10_1007_s10664_020_09861_4 crossref_primary_10_1002_bimj_201000153 crossref_primary_10_1177_09622802241267356 crossref_primary_10_1002_pst_70001 crossref_primary_10_1016_j_compenvurbsys_2017_04_002 crossref_primary_10_1177_193229681300700422 crossref_primary_10_1080_15598608_2012_719800 crossref_primary_10_1109_TCBB_2010_55 crossref_primary_10_1002_jps_24162 crossref_primary_10_1158_1940_6207_CAPR_15_0033 crossref_primary_10_1016_j_clnu_2016_12_020 crossref_primary_10_1359_jbmr_081201 crossref_primary_10_1016_j_jspi_2011_11_015 crossref_primary_10_1136_jcp_2008_061010 crossref_primary_10_1162_NECO_a_00972 crossref_primary_10_1080_13658816_2013_862623 crossref_primary_10_1002_bimj_202000036 crossref_primary_10_1016_j_compbiomed_2021_104886 crossref_primary_10_1158_1078_0432_CCR_06_1593 crossref_primary_10_1007_s00180_012_0321_5 crossref_primary_10_1016_j_neucom_2021_02_015 crossref_primary_10_1016_j_tranon_2018_07_016 crossref_primary_10_1155_2013_306908 crossref_primary_10_1007_s10985_012_9233_5 crossref_primary_10_1155_2013_863592 crossref_primary_10_1177_117693510700300032 crossref_primary_10_1186_1755_8794_6_S2_S1 crossref_primary_10_1016_j_jspi_2023_02_002 |
| Cites_doi | 10.2214/ajr.168.1.8976911 10.1093/jnci/90.6.440 10.1002/sim.4780081011 10.1016/S1076-6332(97)80161-4 10.1111/j.0006-341X.2000.00352.x 10.1111/j.0006-341X.2000.01082.x 10.1198/016214503000198 10.1198/016214501753168136 10.1097/00004424-199209000-00015 10.1056/NEJM200105033441806 10.1198/016214502388618915 10.1111/1467-9876.00170 10.1093/oso/9780198509844.001.0001 10.1093/biomet/76.3.585 10.2307/2531595 10.1148/radiology.201.3.8939225 10.1002/(SICI)1097-0258(19960730)15:14<1575::AID-SIM283>3.0.CO;2-2 10.1177/0272989X8900900307 10.1016/S0090-4295(01)01497-2 10.1177/0272989X9901900303 10.1002/(SICI)1097-0258(19980515)17:9<1033::AID-SIM784>3.0.CO;2-Z |
| ContentType | Journal Article |
| Copyright | Copyright 2003 The International Biometric Society |
| Copyright_xml | – notice: Copyright 2003 The International Biometric Society |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1111/1541-0420.00071 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Biology Mathematics |
| EISSN | 1541-0420 |
| EndPage | 623 |
| ExternalDocumentID | 14601762 10_1111_1541_0420_00071 BIOM071 3695437 ark_67375_WNG_7685KQD3_S |
| Genre | article Research Support, U.S. Gov't, P.H.S Journal Article Comparative Study |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM54438 – fundername: NHLBI NIH HHS grantid: T32 HL07183 |
| GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAMMB AANHP AANLZ AAONW AASGY AAUAY AAWIL AAXRX AAYCA AAZKR AAZSN ABAWQ ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOD ACHJO ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEOTA AEUPB AEUYR AFBPY AFDVO AFEBI AFFHD AFGKR AFKRA AFVYC AFWVQ AFZJQ AGLNM AGQPQ AGTJU AGXDD AHGBF AHMBA AIAGR AIDQK AIDYY AIHAF AIURR AJAOE AJBYB AJNCP AJXKR ALAGY ALEEW ALMA_UNASSIGNED_HOLDINGS ALRMG AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESTFP ESX F00 F01 F04 F5P FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X H13 HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AGORE ALIPV ALUQN PUEGO AAYXX CITATION O8X 3V. AAHHS ABTAH ACCFJ ADZOD AEEZP AELPN AEQDE AEUQT AFFTP AFPWT AIBGX AIWBW AJBDE CGR CUY CVF ECM EIF JSODD NPM PKN VQA WRC 7X8 |
| ID | FETCH-LOGICAL-c5041-223fb8e997be9e453624fc6a8190b0af8daee5f72f2c8616bca6a0154484cc5b3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 271 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000185220100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0006-341X |
| IngestDate | Sun Nov 09 12:01:52 EST 2025 Wed Feb 19 01:50:45 EST 2025 Sat Nov 29 03:53:21 EST 2025 Tue Nov 18 22:28:58 EST 2025 Sun Sep 21 06:21:09 EDT 2025 Thu Jul 03 21:22:35 EDT 2025 Tue Nov 11 03:32:54 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5041-223fb8e997be9e453624fc6a8190b0af8daee5f72f2c8616bca6a0154484cc5b3 |
| Notes | istex:406D685DB7B1705DC79CB0A5B8EAC7A3DADEAAB2 ark:/67375/WNG-7685KQD3-S ArticleID:BIOM071 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://zenodo.org/record/1230587 |
| PMID | 14601762 |
| PQID | 71377378 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_71377378 pubmed_primary_14601762 crossref_citationtrail_10_1111_1541_0420_00071 crossref_primary_10_1111_1541_0420_00071 wiley_primary_10_1111_1541_0420_00071_BIOM071 jstor_primary_3695437 istex_primary_ark_67375_WNG_7685KQD3_S |
| PublicationCentury | 2000 |
| PublicationDate | September 2003 |
| PublicationDateYYYYMMDD | 2003-09-01 |
| PublicationDate_xml | – month: 09 year: 2003 text: September 2003 |
| PublicationDecade | 2000 |
| PublicationPlace | 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K |
| PublicationPlace_xml | – name: 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K – name: United States |
| PublicationTitle | Biometrics |
| PublicationTitleAlternate | Biometrics |
| PublicationYear | 2003 |
| Publisher | Blackwell Publishing International Biometric Society |
| Publisher_xml | – name: Blackwell Publishing – name: International Biometric Society |
| References | Wieand, S., Gail, M., James, B., and James, K. (1989). A family of nonparametric statistics for comparing diagnostic markers with paired or unpaired data. Biometrika 76, 585 - 592. Baker, S. (2000). Identifying combinations of cancer markers for further study as triggers of early intervention. Biometrics 56, 1082 - 1087. Hanley, J. and Hajian-Tilaki, K. (1997). Sampling variability of nonparametric estimates of the areas under receiver operating characteristic curves: An update. Academic Radiology 17, 49 - 58. Heinonen, O., Albanes, D., Vitarmo, J., and Taylor, P. (1998). Prostate cancer and supplementation with α-tocopherol and β-carotene: Incidence and mortality in a controlled trial. Journal of the National Cancer Institute 90, 440 - 447. Dodd, L. and Pepe, M. (2003). Semi-parametric regression for the area under the receiver operating characteristic curve. Journal of the American Statistical Association 98, 409 - 417. Dorfman, D., Berbaum, K., and Metz, C. (1992). Receiver operating characteristic analysis: Generalization to the population of readers and patients with the jackknife method. Investigative Radiology 27, 723 - 731. Obuchowski, N. (1997). Testing for equivalence of diagnostic tests. American Journal of Roentgenology 168, 13 - 17. Barry, M. (2001). Prostate-specific-antigen testing for early diagnosis of prostate cancer. New England Journal of Medicine 344, 1373 - 1377. Cai, T. and Pepe, M. (2003). Semi-parametric ROC analysis to evaluate biomarkers for disease. Journal of the American Statistical Association 97, 1099 - 1107. McClish, D. (1989). Analyzing a portion of the ROC curve. Medical Decision Making 9, 190 - 195. Lehmann, E. (1997). Testing Statistical Hypotheses, Chapter 6, 314 - 321. New York : Springer. Thompson, M. L. and Zucchini, W. (1989). On the statistical analysis of ROC curves. Statistics in Medicine 8, 1277 - 1290. Tanguay, S., Begin, L., Elhilali, H., Karakiewicz, P., and Aprikian, A. (2002). Comparative evaluation of total PSA, free/total PSA, and complexed PSA in prostate cancer detection. Adult Urology 59, 261 - 265. Pepe, M. (2000). An interpretation for the ROC curve and inference using GLM procedures. Biometrics 56, 352 - 359. DeLong, E. R., DeLong, D., and Clarke-Pearson, D. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 44, 837 - 845. Heagerty, P. and Pepe, M. (1999). Semiparametric estimation of regression quantiles with application to standardizing weight for height and age in US children. Applied Statistics 48, 533 - 551. Metz, C., Herman, B., and Shen, J.-H. (1998). Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data. Statistics in Medicine 17, 1033 - 1053. Etzioni, R., Pepe, M., Longton, G., Hu, C., and Goodman, G. (1999). Incorporating the time dimension in receiver operating characteristic curves. Medical Decision Making 19, 242 - 251. Jiang, Y., Metz, C., and Nishikawa, R. (1996). A receiver operating characteristic partial area index for highly sensitive diagnostic tests. Radiology 201, 745 - 750. Hanley, J. (1996). The use of the "binormal" model for parametric ROC analysis of quantitative diagnostic tests. Statistics of Medicine 15, 1575 - 1585. Pepe, M. (2003). Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford: Oxford University Press. Baker, S. and Pinsky, P. (2001). A proposed design and analysis for comparing digital and analog mammography: Special receiver operating characteristic methods for cancer screening. Journal of the American Statistical Association 96, 421 - 428. 1997; 168 2001; 344 1998; 17 2002; 59 1989; 76 2001 2000; 56 1999; 19 1999; 48 1989; 9 1989; 8 1988; 44 1997 1997; 17 1998; 90 2003 1992; 27 1996; 201 1996; 15 2003; 97 2001; 96 2003; 98 e_1_2_10_12_1 e_1_2_10_23_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_24_1 e_1_2_10_10_1 e_1_2_10_11_1 e_1_2_10_22_1 e_1_2_10_20_1 Lehmann E. (e_1_2_10_16_1) 1997 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 Heinonen O. (e_1_2_10_14_1) 1998; 90 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 Pepe M. (e_1_2_10_21_1) 2003 e_1_2_10_7_1 e_1_2_10_15_1 |
| References_xml | – reference: Dodd, L. and Pepe, M. (2003). Semi-parametric regression for the area under the receiver operating characteristic curve. Journal of the American Statistical Association 98, 409 - 417. – reference: Pepe, M. (2000). An interpretation for the ROC curve and inference using GLM procedures. Biometrics 56, 352 - 359. – reference: Baker, S. (2000). Identifying combinations of cancer markers for further study as triggers of early intervention. Biometrics 56, 1082 - 1087. – reference: Pepe, M. (2003). Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford: Oxford University Press. – reference: Jiang, Y., Metz, C., and Nishikawa, R. (1996). A receiver operating characteristic partial area index for highly sensitive diagnostic tests. Radiology 201, 745 - 750. – reference: McClish, D. (1989). Analyzing a portion of the ROC curve. Medical Decision Making 9, 190 - 195. – reference: Tanguay, S., Begin, L., Elhilali, H., Karakiewicz, P., and Aprikian, A. (2002). Comparative evaluation of total PSA, free/total PSA, and complexed PSA in prostate cancer detection. Adult Urology 59, 261 - 265. – reference: Metz, C., Herman, B., and Shen, J.-H. (1998). Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data. Statistics in Medicine 17, 1033 - 1053. – reference: Heagerty, P. and Pepe, M. (1999). Semiparametric estimation of regression quantiles with application to standardizing weight for height and age in US children. Applied Statistics 48, 533 - 551. – reference: Lehmann, E. (1997). Testing Statistical Hypotheses, Chapter 6, 314 - 321. New York : Springer. – reference: Baker, S. and Pinsky, P. (2001). A proposed design and analysis for comparing digital and analog mammography: Special receiver operating characteristic methods for cancer screening. Journal of the American Statistical Association 96, 421 - 428. – reference: DeLong, E. R., DeLong, D., and Clarke-Pearson, D. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 44, 837 - 845. – reference: Hanley, J. and Hajian-Tilaki, K. (1997). Sampling variability of nonparametric estimates of the areas under receiver operating characteristic curves: An update. Academic Radiology 17, 49 - 58. – reference: Hanley, J. (1996). The use of the "binormal" model for parametric ROC analysis of quantitative diagnostic tests. Statistics of Medicine 15, 1575 - 1585. – reference: Heinonen, O., Albanes, D., Vitarmo, J., and Taylor, P. (1998). Prostate cancer and supplementation with α-tocopherol and β-carotene: Incidence and mortality in a controlled trial. Journal of the National Cancer Institute 90, 440 - 447. – reference: Cai, T. and Pepe, M. (2003). Semi-parametric ROC analysis to evaluate biomarkers for disease. Journal of the American Statistical Association 97, 1099 - 1107. – reference: Thompson, M. L. and Zucchini, W. (1989). On the statistical analysis of ROC curves. Statistics in Medicine 8, 1277 - 1290. – reference: Barry, M. (2001). Prostate-specific-antigen testing for early diagnosis of prostate cancer. New England Journal of Medicine 344, 1373 - 1377. – reference: Etzioni, R., Pepe, M., Longton, G., Hu, C., and Goodman, G. (1999). Incorporating the time dimension in receiver operating characteristic curves. Medical Decision Making 19, 242 - 251. – reference: Wieand, S., Gail, M., James, B., and James, K. (1989). A family of nonparametric statistics for comparing diagnostic markers with paired or unpaired data. Biometrika 76, 585 - 592. – reference: Dorfman, D., Berbaum, K., and Metz, C. (1992). Receiver operating characteristic analysis: Generalization to the population of readers and patients with the jackknife method. Investigative Radiology 27, 723 - 731. – reference: Obuchowski, N. (1997). Testing for equivalence of diagnostic tests. American Journal of Roentgenology 168, 13 - 17. – volume: 201 start-page: 745 year: 1996 end-page: 750 article-title: A receiver operating characteristic partial area index for highly sensitive diagnostic tests publication-title: Radiology – volume: 344 start-page: 1373 year: 2001 end-page: 1377 article-title: Prostate‐specific‐antigen testing for early diagnosis of prostate cancer publication-title: New England Journal of Medicine – volume: 59 start-page: 261 year: 2002 end-page: 265 article-title: Comparative evaluation of total PSA, free/total PSA, and complexed PSA in prostate cancer detection publication-title: Adult Urology – volume: 19 start-page: 242 year: 1999 end-page: 251 article-title: Incorporating the time dimension in receiver operating characteristic curves publication-title: Medical Decision Making – volume: 56 start-page: 1082 year: 2000 end-page: 1087 article-title: Identifying combinations of cancer markers for further study as triggers of early intervention publication-title: Biometrics – year: 2001 – volume: 17 start-page: 1033 year: 1998 end-page: 1053 article-title: Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously‐distributed data publication-title: Statistics in Medicine – volume: 98 start-page: 409 year: 2003 end-page: 417 article-title: Semi‐parametric regression for the area under the receiver operating characteristic curve publication-title: Journal of the American Statistical Association – volume: 168 start-page: 13 year: 1997 end-page: 17 article-title: Testing for equivalence of diagnostic tests publication-title: American Journal of Roentgenology – year: 2003 – volume: 96 start-page: 421 year: 2001 end-page: 428 article-title: A proposed design and analysis for comparing digital and analog mammography: Special receiver operating characteristic methods for cancer screening publication-title: Journal of the American Statistical Association – volume: 9 start-page: 190 year: 1989 end-page: 195 article-title: Analyzing a portion of the ROC curve publication-title: Medical Decision Making – volume: 44 start-page: 837 year: 1988 end-page: 845 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach publication-title: Biometrics – volume: 56 start-page: 352 year: 2000 end-page: 359 article-title: An interpretation for the ROC curve and inference using GLM procedures publication-title: Biometrics – volume: 15 start-page: 1575 year: 1996 end-page: 1585 article-title: The use of the “binormal” model for parametric ROC analysis of quantitative diagnostic tests publication-title: Statistics of Medicine – volume: 76 start-page: 585 year: 1989 end-page: 592 article-title: A family of nonparametric statistics for comparing diagnostic markers with paired or unpaired data publication-title: Biometrika – volume: 97 start-page: 1099 year: 2003 end-page: 1107 article-title: Semi‐parametric ROC analysis to evaluate biomarkers for disease publication-title: Journal of the American Statistical Association – volume: 17 start-page: 49 year: 1997 end-page: 58 article-title: Sampling variability of nonparametric estimates of the areas under receiver operating characteristic curves: An update publication-title: Academic Radiology – volume: 48 start-page: 533 year: 1999 end-page: 551 article-title: Semiparametric estimation of regression quantiles with application to standardizing weight for height and age in US children publication-title: Applied Statistics – volume: 90 start-page: 440 year: 1998 end-page: 447 article-title: Prostate cancer and supplementation with α‐tocopherol and β‐carotene: Incidence and mortality in a controlled trial publication-title: Journal of the National Cancer Institute – volume: 8 start-page: 1277 year: 1989 end-page: 1290 article-title: On the statistical analysis of ROC curves publication-title: Statistics in Medicine – volume: 27 start-page: 723 year: 1992 end-page: 731 article-title: Receiver operating characteristic analysis: Generalization to the population of readers and patients with the jackknife method publication-title: Investigative Radiology – start-page: 314 year: 1997 end-page: 321 – ident: e_1_2_10_19_1 doi: 10.2214/ajr.168.1.8976911 – volume: 90 start-page: 440 year: 1998 ident: e_1_2_10_14_1 article-title: Prostate cancer and supplementation with α‐tocopherol and β‐carotene: Incidence and mortality in a controlled trial publication-title: Journal of the National Cancer Institute doi: 10.1093/jnci/90.6.440 – start-page: 314 volume-title: Testing Statistical Hypotheses year: 1997 ident: e_1_2_10_16_1 – ident: e_1_2_10_23_1 doi: 10.1002/sim.4780081011 – ident: e_1_2_10_12_1 doi: 10.1016/S1076-6332(97)80161-4 – ident: e_1_2_10_20_1 doi: 10.1111/j.0006-341X.2000.00352.x – ident: e_1_2_10_2_1 doi: 10.1111/j.0006-341X.2000.01082.x – ident: e_1_2_10_8_1 doi: 10.1198/016214503000198 – ident: e_1_2_10_3_1 doi: 10.1198/016214501753168136 – ident: e_1_2_10_9_1 doi: 10.1097/00004424-199209000-00015 – ident: e_1_2_10_4_1 doi: 10.1056/NEJM200105033441806 – ident: e_1_2_10_7_1 – ident: e_1_2_10_5_1 doi: 10.1198/016214502388618915 – ident: e_1_2_10_13_1 doi: 10.1111/1467-9876.00170 – volume-title: Statistical Evaluation of Medical Tests for Classification and Prediction year: 2003 ident: e_1_2_10_21_1 doi: 10.1093/oso/9780198509844.001.0001 – ident: e_1_2_10_24_1 doi: 10.1093/biomet/76.3.585 – ident: e_1_2_10_6_1 doi: 10.2307/2531595 – ident: e_1_2_10_15_1 doi: 10.1148/radiology.201.3.8939225 – ident: e_1_2_10_11_1 doi: 10.1002/(SICI)1097-0258(19960730)15:14<1575::AID-SIM283>3.0.CO;2-2 – ident: e_1_2_10_17_1 doi: 10.1177/0272989X8900900307 – ident: e_1_2_10_22_1 doi: 10.1016/S0090-4295(01)01497-2 – ident: e_1_2_10_10_1 doi: 10.1177/0272989X9901900303 – ident: e_1_2_10_18_1 doi: 10.1002/(SICI)1097-0258(19980515)17:9<1033::AID-SIM784>3.0.CO;2-Z |
| SSID | ssj0009502 |
| Score | 2.2449174 |
| Snippet | Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to discriminate... Summary . Accurate diagnosis of disease is a critical part of health care. New diagnostic and screening tests must be evaluated based on their abilities to... |
| SourceID | proquest pubmed crossref wiley jstor istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 614 |
| SubjectTerms | Area Under Curve Biometrics Biometry Diagnostic testing Estimation bias Estimation methods Estimators Humans Male Mann-Whitney U-statistic Maximum likelihood estimation Modeling Models, Statistical Parametric models Prostate cancer Prostate-Specific Antigen - blood Prostatic Neoplasms - blood Prostatic Neoplasms - diagnosis Receiver operating characteristic curve Regression Regression Analysis Standard error Statistics, Nonparametric |
| Title | Partial AUC Estimation and Regression |
| URI | https://api.istex.fr/ark:/67375/WNG-7685KQD3-S/fulltext.pdf https://www.jstor.org/stable/3695437 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1541-0420.00071 https://www.ncbi.nlm.nih.gov/pubmed/14601762 https://www.proquest.com/docview/71377378 |
| Volume | 59 |
| WOSCitedRecordID | wos000185220100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1541-0420 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7BLkj0UGB5paWQQ0G9BGUTJ06OLbAFAVteK_Zm2Y7TQ1FAuwXRf98ZO5sCoqqQeooU2ZYzj8xM8vkbgI9xzojlWwVdpfOAYRAIlJFhoKLIhCZLZWFC22yC9_vZcJif1mhCOgvj-CGaD27kGfZ9TQ4u1fiRk2Psx0KYRQTNCukUeTtC601a0N477w2OHzHvho4ynEBerDus-X0IzvNsiSehqU1SfpigFF_KP5-mszYe9eb_w5MswNs6GfU_O-tZhClTdWDWtaf81YE3Jw2n67gDc5SXOlrnJdg6JZOjuYNdfx9vuhOQvqwK_9x8d-DaahkGvf3L3YOg7rgQ6CTETWCuUKrM5DlXJjcswejGSp1KShtUKMuskMYkJY_KSGdpN1VaptL2McuY1omKV6BV3VRmDXyti7irMNvjBUo95JiG4ipS67LUCud6sDMRttA1HTl1xbgWk7KExCJILMKKxYNPzYRbx8Tx96HbVnvNODn6QQA2noir_leBFVZydLYXiwsPlq16m4Fxmics5h5sTtQt0N3oH4qszM3dWHBiaIx55sGqs4I_e2FY22Jo8SCwyv7XJsWXw28neH33yvHvYc4CCi3ObR1aP0d35gPM6Hs0gdEGTPNhtlH7wG9OYPyM |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hlqpwKO2WR1ooOUDFJSibOHFybIEFxO6WAiv2ZtmOwwEU0AJV-ffM2Nl0qVpVSD1FiuzImUfmG2f8DcBmnDNi-VZBR-k8YBgEAmVkGKgoMqHJUlmY0Dab4INBNhrl02dhHD9Es-FGnmG_1-TgtCE95eUY_DETZhHVZoV0jLzF0JjQylt7p91hb4p6N3Sc4VTlxTqjmuCH6nl-e8Sz2NQiMf-clCn-CYA-x7M2IHUX_8ervIU3NRz1vzj7eQczpmrDK9eg8rENC_2G1fWuDfOETB2x83vYOiGjo7nDXX8fb7ozkL6sCv_UXLry2moJht39893DoO65EOgkxEUgWihVZvKcK5MblmB8Y6VOJQEHFcoyK6QxScmjMtJZ2kmVlqm0ncwypnWi4mWYrW4qswq-1kXcUYj3eIFiDzkCUXyK1LostcK5HuxMpC10TUhOfTGuxSQxIbEIEouwYvFgu5lw67g4_j70s1VfM06Or6iEjSfiYnAgMMdKjr_vxeLMgyWr32ZgnOYJi7kHGxN9C3Q4-osiK3PzcCc4cTTGPPNgxZnBr7UwzG4xuHgQWG3_a5Hi69G3Pl4_vHD8Brw-PO_3RO9ocPwR5m15oa16W4PZ-_GDWYc5_QPNYfypdoUnmdP_lA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+AUC+Estimation+and+Regression&rft.jtitle=Biometrics&rft.au=Dodd%2C+Lori+E.&rft.au=Pepe%2C+Margaret+S.&rft.date=2003-09-01&rft.pub=Blackwell+Publishing&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=59&rft.issue=3&rft.spage=614&rft.epage=623&rft_id=info:doi/10.1111%2F1541-0420.00071&rft.externalDBID=10.1111%252F1541-0420.00071&rft.externalDocID=BIOM071 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |